- I E B E E EEEEEEEEEEE BB

I. Introduction

AES-11 User's Manual Page 7-1

Chapter VII: Firmware

The AES firmware is the set of all hex codes in the ROM chip (U3). These
codes include BASIC 11, the AES MONITOR, the DEBUGGER, and the small
utility programs used to control the hardware on the AES-11 board. Most
of these subjects are covered in chapter V. Here we discuss the
collection of utility routines which were written in assembly language
and placed into ROM.

Il. AES Utility Routines

AES utility routines is a set of firmware programs designed to aid you
in using on board devices like the LCD etc. These routines can be called
from Basic or assembly language programs. See the AES11ROM.ASM cn the
AES-11 disk for the utility routines source code.

Key Template:

0 1 2 3 ESC

4 5 6 7 TEST

8 9 A B RUN

C D E F FUNC
B. Keypad and LCD routines

1. Function: LCDCLS
DEBUGGER: B 9000
BASIC11: x=call($9000)
Assembly: JSR 59000

Clears the LCD screen and sets the LCD cursor to location 0

2. Function: LCDCHAR
DEBUGGER: B 9003
BASIC11: x=call ($9003)
Assembly: JSR $9003

Sends ASCII code in memory 6040H to the LCD.
3. Function: KEYCHAR

DEBUGGER: B 9006
BASIC11: x=call($9006)

Chapter VII: Firmware

AES-11 User's Manual Page 7-2

Assembly: JSR $9006

Gets ASCII input equivalent to the (0-F) key on the keypad
and stores in memory 6040H. Program will not exit until a
key (0-F) has been pressed. Displayable key codes will be
send to LCD.

Function: KEYHEX
DEBUGGER: B 9009
BASIC11: x=call ($9009)
Assembly: JSR $9009

Gets hexadecimal input (0-Fh) equivalent to the (0-F) key
on the keypad and stores in memory 6040H. Program will not
exit until a key (0-F) has been pressed. Displayable key
codes will be send to LCD.

Function: KEYNUM
DEBUGGER: B 900C
BASIC11: x=call ($900C)
Assembly: JSR $900C

Gets numeric input (0-9) equivalent to the (0-9) key

on the keypad and stores in memory 6040H. Program will not
exit until a key (0-9) has been pressed. Displayable key
codes will be send to LCD.

Function: KEYCODE
DEBUGGER: B 900F
BASIC11: x=call ($900F)
Assembly: JSR $900F

Gets the hardware key code (0-19) and stores it in memory
6040H.

0 4 8 12 16
1 5 9 13 17
2 6 10 14 18
3 7 11 15 19

Function: SETCUR
DEBUGGER: B 902D
BASIC11: x=call($902D)
Assembly: JSR $902D

Sets LCD cursor location to be same as the number in memory
6041H. Cursor location must be from 0 to 31.

Chapter VII: Firmware

T TRE
R S B P R PP WA

AES-11 User's Manual Page 7-3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 | 17 | 18 | 19 | 20 | 21 {22 | 23 | 24 | 25 |26 | 27 } 28| 29 | 30 | 31
B. Serial I/0
1. Function: GETCHRE
DEBUGGER: B 9012
BASIC11: x=call($9012)
Assembly: JSR $9012
Receives byte from serial port at existing setup and puts it
in memory 6040H. Character will be sent to the CRT display.
2. Function: GETCHR
DEBUGGER: B 9015
BASIC11l: x=call($9015)
Assembly: JSR $9015
Receive byte from serial port at existing setup and puts it
in memory 6040H. Character will be sent to the CRT display.
3. Function: PUTCHR
DEBUGGER: B $9018
BASICl1l1l: x=call($9018)
Assembly: JSR $9018
Sends ASCII code in 6040H to the CRT display through the 1st
serial port
4, Function: ENABLES2
BASIC11: x=call ($903C)
Assembly: JSR $903C
Enable the 2nd serial port. I/0 input will be discontinued
from the 1lst serial port.
5. Function: ENABLES1
Assembly: JSR $903F
BASIC11: x=call ($903F)
Enable the 1lst serial port.
C. A/D and D/A conversion

1.

Function: ADPEOQ
DEBUGGER: B $9021
BASIC11: x=call($9021)
Assembly: JSR $9021

Chapter Vil: Firmware

AES-11 User's Manual Page 7-4

-

Starts A/D (analog to digital) conversion at PORT E pin O
and stores result in memory 604 0H

Function: DAC

DEBUGGER: B 9020
BASIC1l1l: x=call($9020)
Assembly: JSR $9020

Reads value D (digital) in memory 6040H and makes D/A
{digital to analog) conversion to the D/A output.

Other special functions

1.

Function: CRTTEXT
Assembly: JSR $9027

Sends text string ending with null character tO the CRT
display indexed by IX register.

1dx #mesg
jsr $9027

Function: LCDTEXT
Assembly: JSR $902A

Sends text string ending with null character toO the LCD
indexed by IX register.

1dx #mesg
jsr $902A

Function: LEDSON
DEBUGGER: B 901B
BASIC11l: x=call ($901B)
Assembly: JSR $901B

Toggle six leds on the AES-11 board on.

Function: LEDSOFF

DEBUGGER: B 901E

BASIC11l: x=call ($901E)

Assembly: JSR LEDSOFF or JSR $901E

Toggle six leds on the AES-11 board off.
Function§ SQWAVE

DEBUGGER: B $9030

BASIC11: x=call($9030)

Assembly: JSR $9030

Generate a 50Hz (default) square wave at PORT A pin 6

Chapter VII: Firmware

AES-11 User's Manual Page 7-5

running continuously.

6. Function SQWAVFF
DEBUGGER: B $9033
BASIC11: x=call($9033)
Assembly: JSR $9033

Stop generating a Square wave at PORT A pin 6

7. Function: S19UPLOAD
DEBUGGER: U
BASIC11: x=call($9039)
Assembly: JSR $9039

Allows the user to download a Motorola hex file onto the
AES-11 board and load the program into AES-11 RAM memory
starting address specifies in the hex file.

8. Function: AUTORUN
DEBUGGER: B 9042
Assembly: JSR $9042

This function will place a 1 in memory 6052Hex to indicate a
self-start program. Upon power up, the DEBUGGER will execute
the program stored in RAM starting at 100Hex.

I MC68HC11 Floating-Point Package

Suppose you have the result of a 12 bit A/D conversion, say 9B3Hex,
stored in two bytes of RAM (only 3 nibbles are required) . Further
suppose it is required to multiply this result by 3.8884decimal to get
the needed result, which may be pressure or temperature etc. You will
have to write assembly language subroutines to remove the decimal,
convert all numbers to hex and do the multiplication. And then convert
the result to decimal (it is 96548972decimal) and put the decimal point
back in to get a final result (9654.8972decimal) so that it can be
printed out or stored in a disk file in an understandable format. This
is hexadecimal integer (fixed-point) math.

We show next how to use the floating-point routines in the AES-11 ROM.
It requires a little work, but it is still preferable to the above method
in many cases.

The assembly source code for the floating-point routines is in the 8-Bit
MCU Applications manual referenced in Appendix Al, and it is also on the
Motorola WEB site. The hex code in ROM required for the floating-point
routines takes up about 2500 bytes of memory. If you needed only one
routine, say divide, then far less memory would be required.

Some math operations, like Square root, take one variable and some, like
multiplication, take two. Two 5-byte memory locations ($6100 through

Chapter VII: Firmware

AES-11 User's Manual Page 7-6

$6109 in RAM) are set aside for the variables to be operated on by the
math routines. When we perform a multiplication two variables are taken
from the two memory locations, multiplied, an then the result is put into
one of the same two locations. The numbers in these two 5-byte locations
are in a compacted form that is written and read only by the floating-
point routines.

Your numbers can be input in one of two forms. First is a hexadecimal
integer, 1like 55AF3Hex, and the second is a ascii string, 1like -
3.9945E+12. 1In the case of ascii strings, you can use any reasonable way
or writing them. A few examples: 21.5567, 0.0033445, -222.333, or
345.9993E-7. The only restriction is the ascii string must fit into 14
or fewer bytes. Each number, decimal point, sign, and E will take one
byte. A 14 byte ascii number is +23.997345E+13 . The maximum size
number is 8 digits, like 3.1415927 or like the 14 byte example. A
floating-point routine will compact this number into a 5 byte floating-
point format.

An easy example of how a hex integer ends up in your control system is
the A/D converter. The converters on the 68HC11A0 measure a voltage and
place a hex value between 00H and FFH in one of the A/D Result Registers,
ADR1 through ADR4. ASCII requires more explanation. The ascii number
+4.0723, for example, takes 7 bytes of memory. The bytes in memory are
2BH, 34H, 2EH, 30H, 37H, 32H, 33H where 2EH is the ascii representation
of the decimal point, 32H is ascii for the number 2 etc. (see your ASCII
CHART at the back of the small Programming Reference Guide). ASCII
numbers are placed into memory in the AES-11 by transfer from the PC
keyboard, the AES-11 keypad, by a BASIC11 POKE command, or you can place
ascli numbers directly in your assembly program with the FCC directive.
For example see the KEYCHAR routine in section II-B for using the keypad
and see the program FLOAT.ASM on your AES-11 disk for using the FCC
directive. (See the programs FLOAT, THERMO, and 12AD on your disk for
examples of using floating point numbers in assembly programs.)

The ten bytes of RAM (at addresses 6100H-6109H) are used for the two 5-
byte software floating point accumulators, FPACCL in $6100-$6104 and
FPACC2 in $6105-$6109. Each five-byte accumulator consists of a one-byte
exponent, a three-byte mantissa, and one byte that is used to indicate
the mantissa sign. The exponent byte is used to indicate the position of
the binary point and is biased by decimal 128 ($80) to make floating-
point comparisons easier. This one-byte exponent gives a dynamic range
of about 1x10:+38. The mantissa consists of three bytes (24 bits) and is
used to hold both the integer and fractional portion of the floating-
point number. The mantissa is always assumed to be "normalized" (i.e.,
most-significant bit of the most-significant byte a one). A 24-bit
mantissa will provide slightly more than seven decimal digits of
precision. A separate byte is used to indicate the sign of the mantissa
rather than keeping it in twos complement form so that unsigned
arithmetic operations may be used for manipulation of the mantissa. A
positive mantissa is indicated by this byte being equal to zero ($00).
A negative mantissa is indicated by this byte being egqual to minus one
($FF). For example, the number pi and how it looks in floating-point

Chapter VII: Firmware

AES-11 User's Manual Page 7-7

format.

FPACC1 is 82 C9 OF DB 00 for number +3.1415927
FPACC2 is 82 C9 OF DB FF for number -3.1415927

ERRORS

There are seven errors codes that may be returned by the floating-point
package. When an error occurs, the condition is indicated to the calling
program by setting the carry bit in the condition code register and
returning an error code in the A-accumulator. Then a RTS instruction is
issued and the next instruction in the calling program (your program)
will be executed. You must test the carry bit upon returning from a
floating-point subroutine if you want to use the error messages. You may
do this for debugging a program.

Error # Meaning

1 Format Error in ASCII to Floating-Point
Conversion

2 Floating-Point Overflow

3 Floating-Point Underflow

4 Division by Zero (0)

5 Floating-Point Number too Large or Small
to Convert to Integer

6 Square Root of a Negative Number

7 Tangent of =wn/2

These following floating-point routines are to be used with assembly.

Function Address Description

ASCFLT $9050 ASCII TO FLOAT CONVERSION

FLTMUL $9053 FLOATING-POINT MULTIPLY

FLTADD $9056 FLOATING-POINT ADD

FLTSUB © 89059 FLOATING-POINT SUBTRACT

FLTDIV $905C FLOATING-POINT DIVIDE

FLTASC $905F FLOATING-POINT TO ASCII CONVERSION
FLTCMP $9062 FLOATING-POINT COMPARE

UINT2FLT $9065 UNSIGNED INTEGER TO FLOATING POINT
SINT2FLT $9068 SIGNED INTEGER TO FLOATING POINT

Chapter VIi: Firmware

AES-11 User's Manual Page 7-8

FLT2INT $906B FLOATING POINT TO INTEGER
TFR1TO2 $906E TRANSFER FPACC1 TO FPACC2
FLTSQR $9071 FLOATING POINT SQUARE ROOT
FLTSIN 59074 FLOATING POINT SINE

FLTCOS $9077 FLOATING POINT COSINE

FLTTAN $907A FLOATING POINT TANGENT
DEG2RAD $907D DEGREES TO RADIANS CONVERSION
RAD2DEG $9080 RADIANS TO DEGRESS CONVERSION
GETPI $9083 PI

HOW TO USE THE FLOATING-POINT ROUTINES - An Example

Example: Multiply 3BHex(=59decimal) by 2.77854decimal and then multiply
the result by -64.7733decimal.

1)

Convert the hex number 3B to floating point format by using the
routine UINT2FLT. First put $003B (make it a 16 bit number) into
memory at $6102-$6103. This is the lower 2 bytes of the mantissa
in FPACCl. This is just one of the uses of the location FPACCI.

LDD #S$S003B ;put hex number in 16 bit D Register
STD $6102 ' ;transfer to memory starting at $6102

Call routine UNIT2FLT to convert the hex integer located at $6102
into a floating-point format and leave the result in FPACC1.

JSR UNIT2FLT ;see definition of UNIT2FLT below

Move the number in FPACCl into FPACC2 so we leave FPACC1l free for
the next part of the problem.

JSR TFR1TO2 ;subroutine transfers number into FPACC2

Put the starting address of the buffer (max buffer size 14 bytes)
which contains the number 2.77854 into the X Register. Say the
required 7 byte buffer starts at RAM location $0140 (note it could
also be in ROM since we are only going to read this buffer). Use
ASCFLT to convert this ascii to floating-point format and store in
FPACCl. ASCFLT goes to where X is pointed, expects to see a ascii
format number up to 14 bytes long, converts the number to floating-
point format and puts the result in FPACCl. Note that after reading
our 7 byte number the routine ASCFLT will keep on reading thinking
it may be a longer number. Therefore, to indicate the end of our
number we must always put some ascii character not used by ASCFLT
to indicate the end. Put the null character $00 in the 8th byte of
the buffer to stop the conversion.

LDX #$0140 ;have X "point to" $0140
JSR ASCFLT ;puts float format for 2.77854 in FPACC1

Chapter VIi: Firmware

AES-11 User's Manual Page 7-9

6)

Give the assembly command JSR FLTMUL to multiply the numbers in
FPACC1 and FPACC2. The result will be placed in FPACC1.

Now use FLTASC to convert the float format result in FPACC1 back
into ascii and place it into a RAM buffer. We could use the same
buffer at $0140; that way we do not have to change X. Or we could
load in a new value for X and use a different buffer. Let's put
the ascii result in an output buffer at $0150.

LDX #50150 ;answer buffer for 3bH * 2.77854
JSR FLTASC ;result now in output ascii buffer

Finally we want to multiple the number in the buffer at $0150 by the
number -64.7733decimal. First use ASCFLT to convert the number in
50150 to float format in FPACCl. Next transfer this number to
FPACC2. Next put -64.7733 in a 9 byte buffer (the ninth byte is $00)
and use ASCFLT to convert it to float in FPACC1l. Next use FLTMUL
to multiply these numbers and put result in FPACCl. Finally use
FLTASC to convert float in FPACCl to ascii and store in a buffer
somewhere in RAM pointed to by your choice of X.

In a real problem the number 3BH might be from a temperature or RPM
sensor on a motor and the number 2.77854 might be a keypad input and the
number -64.7733 might be a conversion constant. You should now be able
to read the assembly files on your AES-11 disk where floating-points are
used and understand how they work.

1. Function: ASCFLT
ASCII-TO-FLOATING-POINT CONVERSION
Operation: ASCII(X) = FPACC1
Input: X register points to ASCII string to convert.
Output: FPACCl contains the floating-point number.
Error code:Floating-point format error may be returned.

2. Function: FLTMUL
FLOATING-POINT MULTIPLY
Assembly: JSR FLTMUL
Operation: FPACCl x FPACC2 = FPACC1

Input: FPACC1 and FPACC2 contain the number to be
multiplied.
Output: FPACCl contains the product of the two floating-

point accumulators. FPACC2 remains unchanged.
Exror code:0Overflow, Underflow.

3. Function: FLTADD
FLOATING-POINT ADD
Operation: FPACC1+FPACC2 = FPACCL
Input: FPACC1l and FPACC2 contain the numbers to be added
Output: FPACC1 contains the sum of the two numbers.
FPACC2 remains unchanged.
Error code: Overflow, Underflow.

Chapter VII: Firmware

AES-11 User's Manual Page 7-10

Function: FLTSUB
FLOATING-POINT SUBTRACT
Operation: FPACCl1 - FPACC2 = FPACCl

Input: FPACC1 and FPACC2 contain the numbers to be
subtracted.
Output: FPACC1 contains the dlfference of the two

numbers. FPACC2 remains unchanged.
Error codes:0Overflow, Underflow.

Function: FLTDIV
FLOATING-POINT DIVIDE
Operation: FPACC1+FPACC2 = FPACCI

Input: FPACC1l and FPACC2 contain the devisor and
dividend respectively.

Output: FPACCl contains the quotient. FPACC2 remains
unchanged.

Error codes:Divide by zero, Overflow, Underflow.

Function: FLTASC

FLOATING-POINT-TO-ASCII CONVERSION

Operation: FPACCl = (X)

Input: FPACC1 contains the number to be converted to an
ASCII string. The index register X points to a
14 byte string buffer.

Output: The buffer pointed to by the X index register
contains an ASCII string that represents the
number in FPACC1l. The string is terminated with
a zero (0) byte and the X register points to the
start of the string. :

Error codes:None.

Function: FLTCMP
FLOATING-POINT COMPARE
Operation: FPACCl - FPACC2

Input: FPACC1 and FPACC2 contain the numbers to be
compared.
Qutput: Condition codes are properly set so that all

branch instructions may be used to alter program
flow. FPACC1 and FPACC2 remain unchanged.
Error codes:None.

Function: UINT2FLT
UNSIGNED INTEGER TO FLOATING-POINT
Operation: (16-bit unsigned integer) = FPACCl

Input: The lower 16-bits of the FPACCl mantissa contain
an unsigned 16-bit integer.
Qutput: FPACC1 contains the floating-point

representation of the 16-bit unsigned integer.
Error codes:None

Chapter VII: Firmware

AES-11 User's Manual Page 7-11

10.

11.

12.

13.

14.

Function: SINT2FLT
SIGNED INTEGER TO FLOATING-POINT
Operation: (16-bit signed integer) = FPACC1

Input: The lower 16-bits of the FPACCL mantissa contain
a signed 16-bit integer. .
Output: FPACC1 contains the floating-point

representation of the 16-bit signed integer.
Error codes:None

Function: FLT2INT
FLOATING-POINT TO INTEGER
Operation: FPACCl1 = (16-bit signed or unsigned integer)

Input: FPACC1l may contain a floating-point number in
the range 65535<=FPACC1l<=-32767.
Output: The lower 16-bits of the FPACC1 mantissa will

contain a 16-bit singed or unsigned number.
Error codes:None

Function: TFR1TO2

TRANSFER FPACC1 TO FPACC2

Operation: FPACCl = FPACC2

Input: FPACC1 contains a floating-point numbers.
Output: FPACC2 contains the same number as FPACC2.
Error codes:None

Function: FLTSQR

SQUARE ROOT

Operation: + (FPACC1l) = FPACC1

Input: FPACC1 contains a wvalid floating-point number.

Output: FPACC1l contains the squared root of the original

number. FPACC2 is unchanged.

Error codes:SQUARE ROOT ERROR is returned if the number in

FPACCl is negative and FPACC1 remains unchanged.

Function: FLTSIN

SINE

Operation: SIN(FPACCl) = FPACC1

Input: FPACCl contains an angle in radians in the range
-2R<=FPACCl<=2%

Output: FPACCl contains the sine of FPACC1, and FPACC2

remains unchanged.
Error codes:None

Function: COSINE

COSINE

Operation: COS(FPACC1l) = FPACC1

Input: .FPACC1 remains an angle in radians in the range
-2n<=FPACCl<=2m

Output: FPACC1l contains the cosine of FPACC1l, and FPACC2

remains unchanged.
Error codes:None

Chapter VII: Firmware

AES-11 User's Manual Page 7-12

-

15. Function: TANGENT

TANGENT

Operation:TAN(FPACCl) = FPACCl

Input: FPACC1 contains an angle in radians in the range
-2R%<=FPACCl<=2" ' -

Qutput: FPACC1 contains the tangent of the input angle,

and FPACC2 remains unchanged.
Error codes:Returns largest legal number if tangent of
+ ®/2 1s attempted.

16. Function: DEG2RAD
DEGREES TO RADIANS-CONVERSION
Operation: FPACC1 x ® + 180 = FPACC1

Input: Any valid floating-point number representing an
angle in degrees.
Output: Input angles equivalent in radians.

Error codes:None

17. Function: RAD2DEG
RADIANS TO DEGREES CONVERSION
Operation: FPACC1 x 180 = ® = FPACCL

Input: Any valid floating-point number representing an
angle in radians.
Output: Input angles equivalent in degrees.

Error codes :Overflow, Underflow.

18. Function: PI

PI

Operation: ® = FPACC1

Input: None

Output: The value of & is returned in FPACCI.

Exrror codes:None

IV. Preserved Memories for the AES Firmware

User program should never over write the following ram locations:

0000-0100H . pseudo Interrupt Vector (shared both by the
DEBUGGER and BASIC11)

6000H-603FH - HC1l1 I/O Registers

£040H-60FFH - AES11 MONITOR VARIABLES

6100H-6109H - Floating Point Accumulator #1

Floating Point Accumulator #2
6EQO0H-6FFFH - DEBUGGER 's DATA and STACK SPACE

7000H-7FFFH - DEVICES ADDRESS

Chapter VII: Firmware

