
DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA E
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Resumo

Nesta dissertação de doutoramento estudamos e analisamos a geometria dos

sistema catadióptricos não-centrais compostos por uma câmara pinhole ou or-

tográfica e um espelho curvo, cuja forma é uma quádrica não degenerada, in-

cluindo elipsóides, que podem ser esferas, hiperbolóides e parabolóides. A ge-

ometria destes sistemas de visão é parameterizada, analisando o fenómeno de

formação da imagem, e é composta pelos parâmetros intŕınsecos da câmara,

os parâmetros da superf́ıcie do espelho e a posição e orientação da câmara

em relação ao espelho e ao sistema de referência do mundo. A formação da

imagem é estudada numa perspectiva puramente geométrica, focando prin-

cipalmente o modelo de projecção e a calibração do sistema de visão.

As principais contribuições deste trabalho incluem a demonstração de

que num sistema catadióptrico não-central com uma câmara em perspectiva

e uma quádrica não degenerada, o ponto de reflexão na superf́ıcie do espelho

(projectando na imagem qualquer ponto 3D do mundo) pertence a uma curva

quártica que é dada pela intersecção de duas superf́ıcies quádricas. O corre-

spondente modelo de projecção é também desenvolvido e é expresso através

de uma equação não linear impĺıcita, dependente de um único parâmetro.

Relativamente à calibração destes sistemas de visão, foi desenvolvido um

método de calibração, assumindo o conhecimento dos parâmetros intŕınsecos

da câmara em perspectiva e de um conjunto de pontos 3D expressos em

coordenadas locais (estrutura 3D do mundo). Informação acerca do contorno

xix
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aparente do espelho é também usada para melhorar a precisão da estimação.

Um outro método de calibração é proposto, assumindo uma calibração prévia

do sistema no sentido de um modelo geral de câmara (correspondências entre

pontos na imagem e raios incidentes no espaço).

São desenvolvidas e apresentadas experiências com simulações extensivas

e também com imagens reais de forma a testar a robustez e precisão dos

métodos apresentados.

As principais conclusões apontam para o facto de estes sistemas de visão

serem altamente não lineares e a sua calibração ser posśıvel com boa pre-

cisão. Apesar de uma calibração com precisão muito elevada ser posśıvel,

ela só é atingida se algumas condições especiais se verificarem (por exemplo,

elevada densidade de informação da estrutura do mundo e imagens de ele-

vada resolução). Este facto faz com que os sistemas de visão catadióptricos

não centrais sejam igualmente adequados para aplicações direccionadas para

a precisão, quando comparados com os sistemas centrais, embora a sua cal-

ibração seja mais dif́ıcil de obter. Além disso, pode observar-se que a in-

formação da estrutura do mundo pode ser complementada com informação

adicional, tal como o contorno aparente da quádrica, de forma a melhorar

a qualidade dos resultados de calibração. Na verdade, o uso do contorno

aparente do espelho pode, por si, melhorar drasticamente a precisão da es-

timação.



Abstract

In this PhD thesis we study and analyze the geometry of noncentral catadiop-

tric systems composed by a pinhole or orthographic camera and a non-ruled

quadric shaped mirror, that is to say an ellipsoid, which can be a sphere, a

hyperboloid or a paraboloid surface. The geometry of these vision systems

is parameterized by analyzing the image formation and is composed by the

intrinsic parameters of the camera, the parameters of the mirror surface and

the poses of the camera in relation to the mirror and to the world reference

frames. Image formation is studied in a purely geometrical way, focusing

mainly on the projection model and on the calibration of the vision system.

The main contributions include the proof that in a noncentral catadiop-

tric system with a perspective camera and a non degenerate quadric the

reflection point on the surface (projecting any given 3D world point to the

image) is on the quartic curve, that is, the intersection of two quadrics. The

projection model related to the previous definition of the reflection point is

also derived and is expressed as an implicit non linear function on a single

unknown.

In what concerns the calibration of these vision systems, we developed

a calibration method assuming the knowledge of the intrinsic parameters

of the perspective camera and of some 3D points in a local reference frame

(structure) . Information about the apparent contour is also used to enhance

the accuracy of the estimation. Another calibration method is proposed,
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assuming a previous calibration of the system in the sense of a general camera

model (correspondences between image points and incident lines in space).

Experiments with extensive simulations and also using real images are

performed to test the robustness and accuracy of the methods presented.

The main conclusions are that these vision systems are highly non lin-

ear and that their calibration is possible with good accuracy although very

high accuracy in the calibration is only achieved if some conditions are met

(e.g. dense local structure information or high image resolution). This makes

noncentral catadioptric vision systems also suitable for accuracy-driven ap-

plications when compared with the central ones, although their calibration

is more difficult. Furthermore it is observed that structure of the world can

be complemented with some additional information, as the quadric apparent

contour, in order to improve the quality of the calibration results. Actually,

the use of the apparent contour can dramatically improve the accuracy of

the estimation.



Part I

PRESENTATION
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Chapter 1

Introduction

Cameras are system devices that acquire images of the world. Often im-

ages are bi-dimensional representations of tri-dimensional scenes where the

transformation of the visual information involved always implies loss of in-

formation. Mathematically this transformation is expressed as a projection

from a higher dimensional space into a smaller one.

The pinhole camera model widely used in computer vision, which ex-

presses the visual transformation as a perspective projection, is still the most

important camera model. This simple and linear model has some limitations,

however.

To overcome the limitations of the vision systems made up of perspective

cameras, several different solutions involving new design of vision systems

have, in the recent years, been proposed and studied, usually aiming to attain

some specific task or optimality in some particular characteristic. Even if the

usual pinhole camera is perfectly suitable for a wide variety of applications,

in several others it can be advantageously replaced by more complex optical

setups involving the combination of mirrors and lenses.

Wider fields of view (since smaller ones are one of the most expressive

geometrical limitations of conventional cameras), for example, are extremely

3



4 1. Introduction

useful for applications such as surveillance and tracking, among many other.

It has been known since ancient times that mirror (initially made of

metal) and glass have the property of changing and redirecting light rays, by

reflecting or refracting their energy. Ancient civilizations were already aware

of the focal properties of some specular surfaces and used them. Today we

suppose that the discovery of glass was incidentally made about 5000 B.C.

by the Phoenicians (described by the Roman historian Pliny) and that its

focal properties were used by ancient Greeks to induce fire. The first known

study on the human visual system was made by Ibn al-Haitham in his Book

of Optiks, where he describes how the lens in the human eye forms an image

on the retina [59]. Later technology allowed mankind to use mirrors and

lenses in precisely controllable deviations of the light.

This also allowed the construction of vision systems that combining cam-

eras, mirrors and lenses, could achieve wider fields of view. For that purpose

the directions of the light rays have to be changed in such a way as to guar-

antee that most of the scene can be imaged by a single sensor. The geometric

properties of such vision systems depend on whether lenses or mirrors (or

combinations of both) are used. The development of those new configura-

tions for vision sensors also implied that several problems had to be tackled,

mainly those concerning the development of methods and models for pro-

jection, calibration, 3D reconstruction, motion and others. Systems that

use mirrors and cameras are called catadioptric and they have recently been

exhaustively studied.

Catadioptric vision systems can be divided into two types depending

on whether the projection is central or not, in other words, depending on

whether all incident light rays intersect each other in a unique viewpoint or

not. The locus of viewpoints depend only on the geometric properties of the

camera, mirrors, lenses and their relative positioning.

Specifically, it has been shown by Baker and Nayar [6] that for quadric
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mirror catadioptric systems, the central projection can be obtained only for

a particular position of the camera optical center, usually the focus of the

quadric. In those cases there exists a closed form expression for the projection

model [12, 47]. However, for the general case and when this constraint is

relaxed, the projection is non central which implies that the light rays do

not intersect at an effective single viewpoint.

Noncentral vision systems do not generally have a projection model. As

a result, closed form expressions relating 3D world point coordinates to their

corresponding image coordinates do not exist whilst they are known for the

case of central systems. The projection through a noncentral catadioptric

system has hence been solved by using either the Snell’s Law or the Fermat

Principle [23], that provide implicit multivariate expressions.

The existence of an explicit projection model is important for vision sys-

tems since the ability of relating not only a pixel with a light ray direction

(also possible in noncentral cameras, provided that the system parameters

are known) but also a 3D world point to a specific pixel allows a much more

complete theory. In addition, such a model also allows the use of several

algorithms based on those geometric relationships. In this context, the cali-

bration is easier to perform in central systems (regardless of their type and

geometry) than in noncentral vision systems.

In fact this is the reason why noncentral vision systems have been used

mainly in applications that do not require extreme accuracy, such as navi-

gation, tracking and visualization. Central vision systems, whether they are

perspective, catadioptric or other, have been usually used also in accuracy-

driven applications, such as 3D reconstruction, motion, structure from mo-

tion, or distance and angle measurement.

To overcome the non existence of a projection model for some types

of vision devices, a new model of cameras has been proposed, namely the

generalized cameras [55, 123]. This class of cameras, an abstraction of the
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image formation phenomenon, are also called black-box cameras and they

associate each pixel with a direction in space. Hence, practically all cameras

(central or not) can be described by a general model. Calibration of those

vision systems results in a list of correspondences between each pixel in image

and a line in space.

Another important problem in computer vision besides geometry and de-

sign of catadioptric systems is the estimation of the camera pose (composed

by location and orientation) in relation to the world, also called extrinsic pa-

rameters. This estimation is a definitely important problem both in computer

vision and in robotics being relevant for several applications, particularly mo-

tion estimation, structure from motion, robot navigation, self-localization,

object recognition, head and body posture and many others.

Several algorithms exist to estimate the pose of a camera in the world, for

central and noncentral projection models, with different types of assumptions

and using a single or multiple images.

The classical approach to the problem of estimating the position and

orientation of the camera in relation to the world frame is the perspective

n-point (PnP) problem. The problem was originally formulated by Fischler

and Bolles [37] as the calculation of the distance and orientation of some

points to the camera optical center (their coordinates in camera frame).

Another understanding of the problem is formulating it as the estimation of

the screw transformation matrix between the camera and world coordinate

systems. The world coordinate system is sometimes called local or object

coordinate system without loss of generality. Those two formulations of the

problem of pose (as a PnP problem or as a screw transformation matrix)

are closely related to each other and many times are indistinguishable in

literature [68].

Several solutions for both have been presented until now. Initially the

approach tends to focus on geometrical properties of triangles or quadruples
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in space and of their projection through the optical system into image. Planar

and non planar solutions have been formalized. Some different approaches

either using multiple views or appearance models were then proposed to

substitute or complement the initial analytical derivations. As for to the

features used, the most popular ones are points. However, lines, planes,

circles, ellipses and curved shapes have also been used in the pose estimation,

providing a vast number of estimation methods.

For non perspective cameras, there are recent works either in general cam-

eras or in more specific noncentral catadioptric systems. The non existence

of an explicit projection model is again limiting. Chen and Chang [21] pre-

sented the solution of the non-perspective 3-point problem (NPnP) for a non

central general camera assuming the knowledge of a direction in space corre-

sponding to each pixel (calibrated camera in the sense of a general model).

Using a different algebraic approach, Nister [99] and Stewénius et al. [119]

also solved the problem of the pose estimation for generalized cameras con-

sidering a pre-calibrated general camera and providing algebraic constraints

to the problem. There are some other geometric solutions but, due to the

nature of the projection, they are all non linear and usually computed by

iterative optimization.

1.1 Our work

In this thesis we are interested in catadioptric systems composed by a conven-

tional perspective camera and curved mirrors expressed by non degenerate

quadric shapes. These mirrors expressed by full rank quadrics are very pop-

ular in omnidirectional vision and include surfaces with conical section as

hyperboloids, paraboloids and ellipsoids (being the sphere a particular case

of the last one).

We are particularly interested in all noncentral configurations of the vi-
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sion system so that the camera positioning in relation to the specular surface

will be unconstrained.

Our work presented here can be divided into three different parts.

The first one is about the geometry of image formation in noncentral cata-

dioptric systems. The projection model understood as the mapping between

a 3D world point in space and the corresponding image pixel is specifically

studied. The reflection of a light ray through the specular surface and its

projection into the image is explained by two different principles of optics:

the Snell’s Law and the Fermat Principle. None of them, however, provide

closed form solutions to this projection in an unconstrained noncentral cata-

dioptric vision system. We studied this topic and we could not find the

wanted closed form projection model. However, some insight is given into

the problem and a novel alternative framework for the geometry of image

formation is proposed. This method to project a 3D point into image ex-

presses the corresponding pixel as the solution of a nonlinear function in a

single parameter, whereas the use of either the Snell’s Law or the Fermat

Principle leads to nonlinear functions that depend on several unknowns.

The second and third parts of the work concern the problem of cali-

brating the vision system. In the second one we use a fully parameterized

system in all derivations and consider that the pinhole intrinsic parameters

are known. By applying nonlinear optimization methods to the problem,

our framework is able to estimate the quadric shaped mirror parameters in

camera coordinates and the transformation matrix between the camera and

world coordinate systems (camera-world pose). In a subsequent step, the

mirror is expressed in its canonical form (allowing for its classification) and

the transformation matrix between the camera and mirror reference frames

(camera-mirror pose) is estimated. We prove that the use of the apparent

contour of the quadric mirror dramatically improves the accuracy of the

estimations.
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The other calibration method we propose is a new method to calibrate

the intrinsic and extrinsic parameters of a generalized catadioptric system

(considered to be noncentral, although it is also suitable to the central pro-

jection case). This two-steps method firstly calibrates light rays by providing

correspondences between incident lines in space and pixels in an arbitrary

world reference frame (in the sense of the calibration of a general camera

model). The second step hence calibrates the intrinsic parameters of the

pinhole camera, the coefficients of the mirror expressed by a quadric, the

position of the optical center of the camera in the world reference frame and

its relative orientation (as in the method previously explained, the system is

thus fully parameterized). A projection model relaxing Snell’s Law is derived

and the deviations from the Snell’s Law and the image reprojection errors

are minimized by means of bundle adjustment using explicitly the derived

jacobian. Information about the apparent contour of the mirror can also

be used to reduce the uncertainty in the estimation by either reducing the

dimension of the problem or by introducing a new term in the cost function.

We emphasize that the two methods presented complement each other

in such a way that it is possible to fully calibrate a noncentral catadioptric

system with quadric mirrors including the calculation of the pose of the

mirror in relation to the camera and of the vision system in relation to the

world with good accuracy. The system is first calibrated by the first method

using only the pinhole camera parameters and the result of this calibration

gives the input data needed for the second method to improve the accuracy of

the full system calibration. The calibration achieved can be highly accurate.

1.2 List of main contributions

The main contributions to the computer vision area of our work presented

throughout this thesis are listed below.
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1. The proof that in a noncentral catadioptric system with a perspective

camera and a non degenerate quadric the reflection point on the surface

that projects any given 3D world point to image is in the quartic curve

that is the intersection of two quadrics: the quadric mirror itself and

an analytical quadric that depends on the mirror, the optical center

and the projected 3D world point.

2. The projection model related to the previous definition of the reflection

point. This projection model can be expressed as an implicit nonlinear

function on a single unknown.

3. A calibration method for the same noncentral catadioptric vision sys-

tems assuming only the intrinsic parameters of the perspective camera

and some 3D points in a local reference frame.

4. A fully calibration method for the same noncentral catadioptric vision

systems assuming a previous calibration of the system in the sense of

a general camera model.

1.3 Outline of the thesis

We start by presenting in the next chapter the state of the art in catadioptric

vision systems. It is not our aim to be exhaustive in the description of this

scientific topic but rather present the main problems and contributions made

to it in recent years. The author is aware of the fact that every summary is

always biased by the understanding of its writer.

In chapter 3 we present some mathematical tools essential to the under-

standing of the thesis work, mainly in geometry and analytical algebra. This

completes the first part of the document.

In the second part, we present in every chapter a different contribution.

In chapter 4 the geometry of catadioptric image formation is analyzed. The
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novel projection model is derived and proposed. Chapters 5 and 6 present

the two calibration methods proposed.

Finally, in the third and last part of the thesis, we discuss the main

contributions, and draw final conclusions. Extensive bibliography is also

provided.





Chapter 2

The State of the Art

The aim of this chapter is to review the state of the art in catadioptric vi-

sion systems, focusing mainly two aspects: calibration and pose. We mean

by calibration the process of estimating the intrinsic parameters of camera,

reflecting surface and their relative positions. By pose we mean the relative

position of the camera and world coordinate systems. Due to the nature of

the two problems, we opted to present the state of the art of both separately.

Some other items are also mentioned and discussed as geometry, stereo, re-

construction, structure from motion for catadioptric and also perspective and

non-perspective cameras.

2.1 Calibration and geometry of catadioptric sys-

tems and non-classical cameras

Since vision systems can be composed in several different ways as, for in-

stance, catadioptric systems that are composed by a perspective or ortho-

graphic camera and a specular mirror or fish-eye systems that are composed

by a perspective camera and a fish-eye lens, or even systems composed by

13
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several mirrors, lenses and cameras, there have been published a multitude

of frameworks providing calibration of these systems. This calibration can

be obviously understood as the establishment of the correspondences be-

tween image pixels and scene points, irrespective of the existence or not of

an explicit projection model.

The use of catadioptric and dioptric systems in computer vision arose

in the late 70’s although it was only in the decade of 90 that it became

popular. The advantages of wider fields of view was first appreciated by

the roboticists that built many panoramic vision systems based on fish-eye

lenses, conic mirrors or even based on perspective swiveling cameras.

As explained in the introduction, the fact that the projection is central

or noncentral plays a key role in the calibration and accuracy-driven ap-

plications in catadioptric vision. Furthermore, generic camera models that

describe the imaging irrespective of the projection model are also very impor-

tant in computer vision since they provide strong freedom in the designing

and use of cameras, mirrors and lenses. Although it is extremely difficult to

establish frontiers in knowledge fields, and hence in classification, since they

always overlap each other, we opted to divide the state of the art for these

different types of cameras.

2.1.1 Central catadioptric systems

Although several catadioptric vision systems existed before (the most repre-

sentative of them are [63, 96, 136, 137]), the first attempt to provide a geo-

metric framework for the image formation on a single viewpoint catadioptric

system is due to Baker and Nayar [6, 7, 97]. They formalized the condition

to obtain a central projection with a perspective camera and a reflecting

mirror surface (catadioptric system). Nayar and Peri [98] also presented

folded catadioptric systems, composed by a perspective camera and two or

more mirrors. The conditions to guarantee central projection are then known
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and thus it is possible to apply to those systems the theoretical advances in

computer vision made so far.

Two other approaches to a unifying theory for central catadioptric vision

systems were presented by Geyer and Daniilidis [43, 47] and Barreto and

Araújo [11, 12]. The former provides a projective geometry framework for

catadioptric systems demonstrating that the image formation of any central

catadioptric system can be decomposed into a two-step projection through

a sphere. On the other hand, the latter shows that the projection in any

central catadioptric system is made up of three functions namely a linear

function mapping the world into an oriented projective plane, a nonlinear

transformation between two oriented projective planes and a collineation

in the plane. This framework was subsequently improved to include also

dioptric systems (systems with cameras and lenses with or without radial

distortion) as long as they maintain a unique viewpoint [9, 10].

These frameworks quickly allowed the appearance of different calibra-

tion theories using geometric features like in [138] (Ying and Hu, 2004) by

searching projective invariants in the projection of lines and spheres, in [15]

(Barreto and Araújo, 2005) by studying the geometrical properties of the pro-

jection of lines through catadioptric systems, in [34] (Fabrizio et al., 2002)

by using the inner and outer contour of the mirror and in [88] (López-Franco

and Bayro-Corrochano, 2006) by applying conformal geometric algebra to

the calibration using not only points, lines and planes but also point pairs,

circles and spheres.

In spite of the fact that these studies provide calibration for general

central catadioptric systems, the one that has been probably more deeply

studied and used so far is the paracatadioptric system which is composed

by a orthographic camera (or perspective one with a telecentric lens) and

a parabolic shaped mirror. These systems have the advantage of providing

central projection irrespective of the vertical location of the camera in rela-
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tion to the mirror. Geyer and Daniilidis [48] provided calibration using lines,

as well as Barreto and Araújo [13,16]. Structure from motion [44] (Geyer and

Daniilidis, 2001) and stereo rectification [46] (Geyer and Daniilidis, 2005) are

also formalized for paracatadioptric vision systems.

Multiple view geometry for central catadioptric systems was also formal-

ized in the Epipolar framework by Svoboda and Pajdla [124]. They proved

that the epipolar constraint takes the shape of a conic in image and they

derive the corresponding conic for all types of central catadioptric systems

with conic section mirrors (hyperboloids, paraboloids and ellipsoids). Other

contributions for Epipolar geometry by deriving explicit expressions for the

Fundamental Matrix are proposed by Geyer and Daniilidis [45] and also by

Gupta and Daniilidis [57] by providing calibration from the fundamental

matrix in planar motion for parabolic shaped mirrors.

Other recent and important works in the calibration and geometry of

central catadioptric vision system include those presented by Daniilidis and

Makadia [25] for optical flow computation, Demonceaux and Vasseur [29]

who propose a new method using Markov Random Fields for segmentation,

image restoration and motion detection, Lin and Bajcsy [85] who present

a central catadioptric viewer using a conical mirror, Hicks, Millstone and

Daniilidis [61] for the tuning of a two-folded mirror system that performs a

given predetermined single viewpoint projection and Scaramuzza, Martinelli

and Siegwart [112] that use a Taylor series expansion to approximate the

projection model and applies a nonlinear minimization method to calibrate

the corresponding central catadioptric system.

2.1.2 Noncentral catadioptric systems

Noncentral catadioptric vision systems are all vision systems composed of

a camera and a reflecting mirror whose projection has multiple viewpoints.

Due to some advantages over the single viewpoint systems and since the cen-
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tral projection is generally obtained for a very particular relative positioning

of the camera and the reflector or lens, the study of noncentral projection

systems became more and more pertinent to the computer vision commu-

nity. For a survey study on noncentral cameras before 2000, we suggest the

reading of [8] (Bakstein and Pajdla, 2000).

As in central catadioptric systems, before the first attempts to study

the geometry and calibration of general noncentral ones, there existed some

proposals mainly in the domain of robotics for navigation purposes.

Swaminathan, Grossberg and Nayar [125, 127] presented the geometric

study of noncentral catadioptric systems composed of quadric shaped mirrors

that include the most used reflector surfaces (hyperboloids, paraboloids and

ellipsoids). The locus of all viewpoints is proved to be the caustic surface

that univocally completely characterizes the vision system.

Micusik and Pajdla [93] presented a calibration method for the same

noncentral catadioptric systems by first approximating the projection to be

central and then performing a refinement on the actual noncentral projection.

Autocalibration and 3D reconstruction are addressed by using two views of

the same vision system. The theory here proposed is extended to include

all wide circular field of view cameras in [94] in a two-view framework. The

epipolar geometry is studied and used in autocalibration, 3D reconstruction

and structure-from-motion estimation.

Bundle adjustment was also proved to be suited to calibration of non-

central catadioptric systems. Lhuillier [83, 84] presented a framework for

the calibration of noncentral catadioptric systems using bundle adjustment.

Numerical computations of the jacobian are used.

Conic fitting is used by Mashita, Iwai and Yachida [92] to calibrate non-

central catadioptric systems. Since there is some ambiguity in their estima-

tion, they propose a selection method to choose the best set of parameters

that better describe the vision system.
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Using another approach, Kannala and Brandt [75] present a generic

framework that includes not only dioptric and catadioptric wide angle cam-

eras but also conventional ones. They use a projection model composed of

two distortion terms: one in the radial direction of the image and the other

in the tangential direction.

Lines are also used to calibrate an off-axis catadioptric sensor by Caglioti

et al. [19]. They use the apparent contour of the mirror and the parameters

estimated are the intrinsic parameters of the pinhole camera, the mirror

shape and the camera-mirror pose.

Several applications of noncentral catadioptric geometry have been stud-

ied and presented in the last years. Caglioti and Gasparini [20] presented a

method to locate 3D lines by a single image.

Differently shaped mirrors are also used in noncentral catadioptric sys-

tems. Spacek [118] proposes a conical mirror and an unwarping function to

rectify the image. Stereo configurations are also studied to provide range

maps for robot navigation. Fiala and Basu [36] present a two-lobe non-

conical section mirror that is used as a two view stereo camera which is

proved to reconstruct 3D models of polyhedral objects. Hicks [60] also pro-

pose new mirror design techniques to perform a predetermined projection.

As this problem doesn’t have a general solution, the method proposed uses

an approximation by means of a numerical solution. The projection model

in catadioptric sensors is addressed.

2.1.3 General cameras

General cameras include all vision systems. They are important to catadiop-

tric vision systems since they provide useful theory on calibration and several

other applications. The general model of cameras was proposed by Gross-

berg and Nayar [55]. They define raxels as virtual sensing elements. Using a

raxel for each direction in space it is possible to establish the correspondence
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between a pixel in the image and an incident light ray direction. The set of

all correspondences is called calibration of the system and is achieved using

structured light patterns. The raxels proposed include geometric, radiomet-

ric and optical properties.

Pless [105] presents this model of general cameras to derive epipolar con-

straints. Sturm and Ramalingam [123] use a geometric simplification of the

general imaging model and propose a method to calibrate these generic cam-

era models using three views. The basic idea is that three points that are

imaged in the same pixel are collinear in 3D world reference system. The

two screw transformations between the camera in first and second and first

and third positions can then be estimated by a high-dimensional lifted linear

system. Ramalingam, Sturm and Lodha [110] present some improvements

and the specific formalization for central cameras [109].

Structure from motion was studied and presented by Ramalingam, Lodha

and Sturm [108]. The approach presented allows to reconstruct scenes from

pre-calibrated images possibly taken by cameras of a different type (cross-

cameras).

Sturm [121] also presents a multi-view study on general camera mod-

els. Several configurations are analyzed and the foundations of multi-view

geometry of completely noncentral cameras are derived. The equivalent to

fundamental and essential matrices, trifocal and quadrifocal tensors in per-

spective cameras are derived for this noncentral camera model.

Recently, Dunne, Mallon and Whelan [31] addressed the problem of the

calibration of a general camera model with the additional assumption of its

centrality. This assumption reduces the complexity of the generic calibration

method. Polynomials are also used to estimate the pose of the sensor linearly.
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2.1.4 Other non-classical cameras

In recent years a multitude of non-classical cameras have been proposed,

usually optimal in a specific characteristic and aimed to achieve a given task.

We don’t intend to be exhaustive in the citation of non-classical cameras,

but rather intend to make a review of the most representative ones, also

important to the understanding and study of noncentral catadioptric vision

systems.

Panoramic images composed of mosaicing images taken from a swiveling

perspective camera have been used in many applications. If perfect align-

ment is achieved in rotating the camera around its optical center, the system

has central projection. Ishiguro, Yamamoto and Tsuji [71] constructed a

panoramic vision system using a rotating camera to construct a map of an

indoor environment and acquire the range of objects using binocular in-

formation. If stereo configurations are required, usually to estimate depth

information, the projection is noncentral. Peleg, Erza and Pritch [104] have

used two swiveling cameras for panoramic imaging and have studied their

geometry and viewpoint locus (caustic surface). Equivalence to compositions

of cameras and lenses is also analyzed. Jiang, Sugimoto and Okutomi [73]

presented an alternative panoramic configuration for dense depth estimation.

Nalwa [96] presented a pyramidal mirror to acquire a wide field of view

and that guarantees a single viewpoint with as many cameras as the faces of

the right mirror-pyramid, that is, four cameras in the common configuration.

Images from the individual cameras are concatenated to yield a 360 degrees

wide panoramic field of view.

Oblique cameras are noncentral cameras whose incident rays don’t in-

tersect each other such that a point is imaged only once. Pajdla [102, 103]

presented oblique cameras as a generalization of panoramic, pushbrooms,

catadioptric systems and other noncentral cameras. Multi-view geometry
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is derived for this class of vision systems. Cross-slit (X-slit) cameras are a

particularization of oblique cameras where all rays pass through two general

skewed lines in space. Their geometry is studied and proposed by Feldman,

Pajdla and Weinshall [24]. Their main application is in generating panoramic

views from single translating pinhole sequences.

Planar mirrors are also used to construct virtually a stereo configuration

to rectify images and estimate depth. Gluckman and Nayar [49] proposed

this vision system and studied the underlying geometry.

Swaminathan, Grossberg and Nayar [126] also designed a mirror to achieve

a given projection function by minimizing image error. The method pre-

sented is linear and is able to find the best solution when the mirror design

has no exact physical realization.

Another type of cameras include abstractions of the real image formation

and modeling by radial distortion, usually including in this design perspective

conventional cameras, dioptric system with fish-eye or other lenses, central

and noncentral catadioptric systems and general wide field of view cameras.

Barreto and Daniilidis [17] have presented multi-view geometry analysis for

these cameras. Tardiff, Sturm and Roy [128] have also presented a self cali-

bration method for these cameras.

Kuthirummal and Nayar [78] proposed the so called radial imaging sys-

tems. Single- and multi-view geometry are derived and applied to recover the

shape of convex objects by using two images. Texture map and reflectance

properties are also addressed.

Rolling-Shutter cameras are those whose image acquisition is not made in

a single shot, that is to say, it is not instantaneous. They are cheap cameras

and usually hand-held. Geyer and Daniilidis [46] proposed a calibration

method for these cameras. They prove that if some conditions are met they

can be modeled by a X-slit camera.

Tisse, White and Hicks [130] constructed a multidirectional optical sensor
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for navigation. The frontal part of the sensor is equivalent to a conventional

perspective camera whereas the non central part of the sensor is composed

of four slopes or a pyramid. Geometry of the sensor is studied and single

viewpoint is achieved by designing the slope of the pyramid.

Using a dual mirror pyramid Hua, Ahuja and Gao [69] have also used

a pyramidal mirror to acquire wide field of view images. Geometry of the

system is analyzed and designed to maximize the field of view.

Recently Kuthirummal and Nayar [77] presented the geometrical frame-

work for vision systems composed by flexible mirror. The calibration is per-

formed using the contour of the mirror and by approximating its deformable

shape by a product of splines.

Many other non-classical cameras exist since the design of vision systems

is highly flexible and new sensors can always be designed to achieve a given

objective and serve a specific task.

2.2 Pose of catadioptric systems and the NPnP

problem

Pose estimation and the well-known perspective n-point (PnP) problem are

not generally the same problem, as shown by Hu and Wu [68]. Despite this

fact those two problems are generally indistinguishably defined in literature.

The former is the estimation of a transformation matrix - the pose (three

rotations and three translations) - between camera and object reference sys-

tems whereas the latter, the PnP, is the estimation of the distance of some

control points (whose relative positions in the object reference frame are

known) to the camera center. However, since both problems are very close

to one another we treat them indistinguishably as in literature.
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2.2.1 Perspective cameras

We firstly review the pose problem in the conventional perspective cameras.

Fischler and Bolles [37] used cosine laws to determine the distance be-

tween the camera and some points in a geometrical approach. This formula-

tion was thereafter linearized by Quand and Lan [106] and later by Ameller

et al. [3]. Hung, Yeh and Harwood [70] proved that four coplanar points

with known coordinates in an object reference frame are sufficient to deter-

mine their coordinates in relation to the camera. Linnainmaa, Harwood and

Davis [86] presented another pose estimation algorithm that uses triangle

pairs to estimate the screw transformation by first computing candidate po-

sition vectors and then the rotation ones. The best solution is chosen by

checking geometrical consistency. Horaud et al. [65] presented an analytical

solution to the perspective 4-point problem.

Using lines rather than points, Chen [22] proposes the estimation of pose.

The solutions are closed-form and are based on a polynomial approach. On

the other hand, conics are used by Ma [89] for the estimation of the pose

where it is proved that two conics are sufficient to estimate it and if the

conics are coplanar, closed-form solutions are derived and presented.

DeMenthon and Davis [27] propose two alternative methods by using only

three points and also four non coplanar points [28]. Both methods are based

on approximations of the perspective projection. The former addresses the

weak-perspective, the paraperspective and the orthoperspective projection

whereas the latter uses an orthoperspective projection. Horaud et al. [107]

present a framework to approximate the full perspective to the paraperspec-

tive projection. All approximations are refined by nonlinear methods to

achieve convergence on the full perspective projection. Claiming accuracy

for distant objects, Oberkamfot, DeMenthon and Davis [101] presented an

iterative method for pose estimation using four or more coplanar points.
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Araújo, Carceroni and Brown [5] improved the accuracy of the work

previously presented by Lowe [87] to estimate the pose in a fully projective

formulation.

Joseph [74] presents a linear solution to the pose estimation in two dimen-

sions to use as a supporting framework to the 3D case. Ji, Costa, Haralick

and Shapiro [72] use alternative geometric feature such as points, lines and

ellipse-circle pairs for the estimation of pose. Tarel and Cooper [129] also use

different features rather than only points. They propose the use of algebraic

curves described as polynomials.

Ansar and Daniilidis [4] presented new linear solutions to the PnP prob-

lem extending it to include lines. The pose can then be computed by using n

points or n lines. The solution is tested in an augmented reality application.

Symmetry is used by Hong et al. [64] for the geometry analysis and

derivation. They point out that the symmetry is capable to facilitate the

pose dramatically as well as the 3D reconstruction and calibration of a visual

system. On a different approach, Davis et al. [26] present a correspondence

free algorithm to estimate the pose using nonlinear methods.

In recent years the problem of pose estimation has still been interesting

the scientific community. Several works are still being presented and pro-

posed for pose estimation. The most important of them are those presented

by Schweighofer and Pinz [115] using a planar target and exploiting the am-

biguities of coplanar configurations of four points, Furukawa et al. [40] by

using outlines of curved surfaces rather than point correspondences, Nister

and Schaffalitzky [100] where four points in two calibrated views are used

and critical configurations are addressed, Kazhdan [76] and Rosenhahn et

al. [111] that use 3D shapes instead of features to track pose of objects.

Moreno-Noguer et al. [95] presented an accurate non-iterative method for

the PnP problem with four or more points. The complexity of the presented

method grows linearly with the number of points, which is the main improve-
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ment in relation to the existing methods (whose computational complexity

is of the fifth order or more). The main idea is to project the points as

combinations of four virtual points and hence the estimation is focused on

the coordinates of these points in the virtual reference frame.

Some other important works in the pose estimation of perspective cam-

eras include [41,56,65–67].

2.2.2 Catadioptric and other non-classical cameras

The pose has been also studied for non perspective cameras and recently the

pose in catadioptric vision systems has interested the community.

Aliaga [1, 2] calibrated catadioptric systems in robotic environments for

pose estimation. Makadia and Daniilidis [90,91] have studied the estimation

of the 3D rotation of the camera reference system using central catadioptric

sensors. They use a generalization of the Fourier Transform and the projec-

tion mapping on the sphere for finding invariants of the rotation parameters.

Another approach using geometric invariants is due to Ying and Hu [138].

Barreto and Araújo [14] also addressed this problem by providing a selection

framework for the camera system in the world reference frame.

The partial estimation of rotation (roll and pitch angles) is proposed by

Demonceaux et al. [30] by using the projection of the horizon in the image

(line at infinity) in a central catadioptric system.

Uncertainties in pose estimation are dealt with by Gebken, Tolvanen and

Sommer [42] for a central catadioptric system. They use line-plane correspon-

dences for geometry and a stochastic method to deal with the uncertainties.

On the other hand, in noncentral projection and general cameras the pose

estimation is very recent.

Fabrizio and Devars [35] analyze the non-perspective n-point problem in

catadioptric systems in a totally analytical approach. Nonlinear closed-form

solution are presented for noncentral projection systems and simplified for
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central ones.

With a different analytical approach, Chen and Chang [21] propose an

exact solution for three points and an approximate solution with minimal

error for more than three points. This method is applicable to generalized

noncentral cameras but can also be applied to perspective ones. Nister [99]

and Stewénius et al. [119] also solved the problem of the pose estimation for

generalized cameras considering a pre-calibrated general camera and provid-

ing algebraic constraints to the problem.

Sturm and Bonfort [122] addressed the problem of pose estimation of an

object by analyzing reflections on two or three planar mirrors with unknown

relative positions using a single image.



Chapter 3

Math tools

There are several mathematical entities, relations and formalisms that are

used in engineering. Engineering can actually be regarded as the applica-

tion of the principles of physics to reality, expressed and described by all

mathematical frameworks. Computer vision and particularly panoramic vi-

sion is extremely related to the branch of mathematics called geometry. In

this chapter, we give some insights into the most used mathematical tools in

this work, without the intention to explain every detail, but only the most

important to understand the text. It is intended to be a consulting section

rather than a textbook for geometry.

3.1 Geometric entities and homogeneous coordi-

nates

Geometric entities as points, planes, lines and quadrics are here represented

in homogeneous coordinates as usual in projective geometry, rather than in

Cartesian coordinates. The point spaces used are P 2 in the image plane and

P 3 in 3D space.

27
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3.1.1 Points

• Points in P 2 are represented algebraically by a 3 × 1 vector in homo-

geneous coordinates. They are represented by x =
[

x1 x2 x3

]T

.

• Points in P 3 are represented algebraically by a 4×1 vector in homoge-

neous coordinates. They are represented by X =
[

X1 X2 X3 X4

]T

.

• Any vector λx in P 2 or λX in P 3, where λ is a non-zero real scalar,

represents the same point.

• Any transformation in P 3, represented by matrix H, is such that X′ =

HX.

3.1.2 Planes

• A point X is on a plane Π if and only if ΠTX = 0.

• Proposition 1 Plane coordinates defined by three non collinear points

can be expressed as a linear combination of the coordinates of one of

these points, given by expressions (3.1) and (3.2).

Proof:

Planes are defined by three distinct non collinear points. They are

expressed by U =
[

u1 u2 u3 u4

]T

, V =
[

v1 v2 v3 v4

]T

and

W =
[

w1 w2 w3 w4

]T

(generating points). We search the formu-

lation of the plane coefficients as a linear combination of one of its

generating points. Consider a plane Π and define an auxiliary matrix

MΠ =
[

X U V W
]

with those three points and a generic point

X =
[

x1 x2 x3 x4

]T

.

Since X must be a linear combination of the other three points in order

to belong to the plane Π, the determinant of matrix MΠ must be zero.
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This gives us the expression of the plane in terms of the minors Dijk of

matrix MΠ (see [58]). It yields Π =
[

D234 −D134 D124 −D123

]T

.

After rearranging the terms, the equation can the rewritten in the form

of equation (3.1) where matrix M is symmetric. This equation is linear

in one of the three points (W) defining the plane.

Π = MW (3.1)

where

M =















0 u3v4 − u4v3 −u2v4 + u4v2 u2v3 − u3v2

−u3v4 + u4v3 0 u1v4 − u4v1 −u1v3 + u3v1

u2v4 − u4v2 −u1v4 + u4v1 0 u1v2 − u2v1

−u2v3 + u3v2 u1v3 − u3v1 −u1v2 + u2v1 0















(3.2)

�

• Planes are transformed by a point transformation H in such a way that

Π′ = H−TΠ.

• Given two planes with coordinates expressed by ΠA and ΠB, the angle

between them is given by its cosine expressed by equation (3.3), where

Q∗
∞ is the absolute dual quadric (see Quadrics).

cosθ =
ΠA

TQ∗
∞ΠB

√

(ΠA
TQ∗

∞ΠA)(ΠB
TQ∗

∞ΠB)
(3.3)

3.1.3 Lines

• Lines in space can be represented by Plücker matrices (4× 4).

• A line defined by the points homogeneous A and B has the represen-

tation L = ABT −BAT .
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• Under the point transformation H, the Plücker matrix transforms as

L′ = HLHT .

• Lines can also be represented by two planes (their intersection) in Dual

Plücker matrices. This representation is dual of the line Plücker matri-

ces defined by the join of two points and is expressed by the equation

L∗ = ΠAΠB
T −ΠBΠA

T .

• Under the point transformation H the dual Plücker matrix transforms

as L′∗ = H−TLH−1.

• Lines have four degrees of freedom and the rank of their corresponding

Plücker matrices is 2.

• The plane defined by the join of point X and line L is Π = L∗X and

L∗X = 0 if and only if X is on L.

• The point defined by the intersection of the line L with the plane Π is

X = LΠ and LΠ = 0 if and only if L is on Π.

• Plücker line coordinates are defined as the six non-zero elements of the

Plücker matrix. If lij is the element in its i-th line and j-th column,

the line coordinates are ℓ =
[

l12 l13 l14 l23 l42 l34

]T

.

• For a line given by the join of two points A and B, the Plücker line

coordinates are those expressed in equation (3.4).

ℓ =

























a1b2 − b1a2

a1b3 − b1a3

a1b4 − b1a4

a2b3 − b2a3

a4b2 − b4a2

a3b4 − b3a4

























(3.4)
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• The direction of a line is its intersection with the plane at infinity

Π∞ =
[

0 0 0 1
]T

.

• The direction of a line ℓ in P 3 is given by a 4× 1 vector that depends

on the Plücker line coordinates as stated in equation (3.5).

dir(ℓ) =
[

l14 l24 l34 0
]

(3.5)

• For the join of two points A and B, the direction is given by equation

(3.6).

dir(ℓAB) =
[

a1b4 − b1a4 a2b4 − b2a4 a3b4 − b3a4 0
]T

(3.6)

• The angle between two lines in an Euclidean 3-space is given by fol-

lowing equation:

cosθ =
dir(ℓ1)Tdir(ℓ2)

√

dir(ℓ1)Tdir(ℓ1)

√

dir(ℓ2)Tdir(ℓ2)
(3.7)

• Proposition 2 Given the lines ℓ1 and ℓ2 in P 3, represented by their

corresponding Plücker matrices L1 and L2, they intersect each other if

and only if L1L
∗
2L1 = 0, where L∗

2 is the dual representation of the L2

Plücker matrix.

Proof:

To prove that the condition is necessary we assume that the lines ℓ1

and ℓ2 intersect. Let us consider an arbitrary plane Πa. If the plane

contains ℓ1 one has L1Πa = 0 and then nothing can be concluded about

the matrix L1L
∗
2L1. If the plane contains the intersection point but

not line ℓ1 nothing either can be concluded since one has L1Πa = X1a
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which is the point of intersection of the plane Πa and ℓ1 and since

it is also the intersection of ℓ1 and ℓ2 and then is on L2, one has

L∗
2X1a = L∗

2L1Πa = 0.

However, if the plane Πa does not contain any of the two lines nor their

intersection point, X1a = L1Πa is the intersection point of plane Πa

with line ℓ1. This point isn’t on the line ℓ2 and then Πb = L∗
2X1a =

L∗
2L1Πa is the plane defined by line ℓ2 and point X1a. And by hypoth-

esis, the two lines intersect each other and then line ℓ1 is on the plane

Πb (notice that if ℓ1 is not on the plane Πb the only common point

with this plane is X1a which is not on the line ℓ2 by definition, so one

concludes that line ℓ1 has two points on plane Πb and consequently ℓ1

is on Πb). We thus have L1Πb = L1L
∗
2L1Πa = 0.

Since the plane Πa is arbitrary one thus conclude the thesis, that is

L1L
∗
2L1 = 0.

The counterpart should be now proved. Assume that L1L
∗
2L1 = 0 and

then let us try to prove that the lines intersect. Consider again an

arbitrary plane Πc not containing any of the two lines nor their inter-

section point. Multiplying the plane Πc in both sides of the equation

we obtain L1L
∗
2L1Πc = 0, where L1Πc represents the intersection

point of the line ℓ1 and the plane Πc. Let’s say Xc. Since this point

is not on ℓ2, L∗
2Xc = L∗

2L1Πa represents the plane defined by ℓ2 and

Xc, say Πd. L1Πd = 0 and then line ℓ1 is on this plane. Since both

ℓ1 and ℓ2 are on the same plane Πd, they intersect each other. This

proves the sufficiency of the condition. �

• Proposition 3 The intersection point of two arbitrary 3-space inter-

secting lines ℓ1 and ℓ2 in P 3 is given by X = L1L
∗
2A, where A is an

arbitrary point not belonging to the plane defined by ℓ1 and ℓ2.
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Proof:

Consider plane Π2A defined by an arbitrary point A and ℓ2 so that

Π2A = L∗
2A. Since A does not belong to the plane defined by ℓ1 and

ℓ2, the intersection of ℓ1 with Π2A is point X, given by X = L1Π2A =

L1L
∗
2A. �

• Consider an Euclidean point a and a vector v and the corresponding

homogeneous representation of both A =
[

a 1
]T

and V =
[

v 0
]T

.

The Plücker Matrix of line that passes in A in the vector direction is

given by:

L = A · (A + V)T − (A + V) ·AT = AVT −VAT (3.8)

3.1.4 Quadrics

• The point X is on the quadric given by the 4×4 matrix Q if and only if

XTQX = 0, where Q is usually symmetric (although a non symmetric

matrix Q can represent the same equation).

• Quadrics are surfaces that respect the above quadratic equation whose

expansion can be written as:

q11x
2
1 + 2q12x1x2 + 2q13x1x3 + 2q14x1x4+

+ q22x
2
2 + 2q23x2x3 + 2q24x2x4 + q33x

2
3 + 2q34x3x4 + q44x

2
4 = 0

(3.9)

where qij is the element (i, j) of Q, considered to be symmetric.

• Under the point transformation H, a point quadric transforms the the

expression Q′ = H−TQH−1.

• The absolute dual quadric Q∗
∞ is a degenerate quadric tangent to the

absolute conic Ω∞.
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• For an Euclidean world frame, the absolute dual quadric is given by

equation (3.10) where I3 is the 3× 3 identity matrix.

Q∗
∞ =

[

I3 0

0T 0

]

(3.10)

• The tangent plane ΠN to a quadric in a point X on the quadric surface

is given by ΠN = QX.

• Given any non symmetric 4×4 matrix Q representing a point quadric,

there is a symmetric matrix QS that represents the same point quadric.

The entries of QS are given by qSij =
qij+qji

2 .

• Non-ruled quadrics are quadrics whose determinant is negative. Geo-

metrically they represent conic section surfaces such as spheroids (in-

cluding ellipsoids), hyperboloids of two sheets and elliptic paraboloids.

They can be represented in canonical form as function of three in-

dependent parameters: A, B and C. The following equation can be

written:

Q =















1 0 0 0

0 1 0 0

0 0 A B/2

0 0 B/2 −C















(3.11)

• For each type of surface, there are some constraints that these pa-

rameters respect. For paraboloids C = 0 and A = 0. For ellipsoids

B = 0 and for hyperboloids A < 0 and C < 0. Spheres have A = 1,

C +B2/2 > 0.

• By changing the coordinates in the x3 axis for hyperboloids and spheres,

the additional constraint B = 0 can be applied. Thus, it can be re-
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garded that the parameter B is non zero only for paraboloids and zero

for all other non-ruled surface types.

• In Euclidean coordinates, the normal vector n to a quadric Q at a

point X is given by the first three coordinates of the normal plane

coordinates ΠN = QX. ni = ΠNi, with i ∈ {1, 2, 3}. It is sometimes

useful to normalize the normal vector so that it becomes unitary.

• Proposition 4 The normal line to the quadric Q at point X is given

by the Plücker matrix expressed as LN = XXTQTQ∗
∞ −Q∗

∞QXXT ,

where Q∗
∞ is the dual absolute quadric.

Proof:

The tangent plane to the quadric through X is given by ΠN = QX and

the direction of this plane is given by dir(ΠN) = Q∗
∞ΠN = Q∗

∞QX.

Since the direction of a plane also represents the intersection of its

normal line with the plane at infinity [120], the normal line is the join of

the points X and dir(ΠN), given by LN = Xdir(ΠN)T −dir(ΠN)XT

or LN = XXTQTQ∗
∞ −Q∗

∞QXXT . �

3.2 Some Geometric Relations in 3D Space

In this section the points are expressed in Euclidean coordinates.

The distance of a point X0 to a line ℓ in 3D space defined by two points

X1 and X2 is given by the following equation [135]:

distance =
‖ (X2 −X1)× (X1 −X0) ‖

‖X2 −X1‖
(3.12)

The point in line ℓ that is closer to the point X0 is given by the following

expression:
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X0ℓ = X1 −
(X1 −X0) · (X2 −X1)

‖X2 −X1‖2
· (X2 −X1) (3.13)

Consider now two skew lines in space, each of them defined by two points:

(X1,X2) and (X3,X4). The distance between these two lines is given by

the expression:

distance =
‖ (X3 −X1) · ((X2 −X1)× (X4 −X3)) ‖

‖ (X2 −X1)× (X4 −X3) ‖ (3.14)

The common orthogonal line to both these lines is defined by the two in-

tersecting points I1 and I2. As stated in [39], the minimum distance between

two skew lines in Rn is achieved for points in lines ℓ1 and ℓ2 such that:







I1 = X1 + t · (X2 −X1) = X1 + t ·V12

I2 = X3 + s · (X4 −X3) = X3 + s ·V34

(3.15)

where V12 and V34 are the line direction vectors. The distance equation

has a single solution if and only if these vectors are not parallel, that is, if

the following condition is met:

det

[

‖ V12 ‖2 −V12 ·V34

−V12 ·V34 ‖ V34 ‖2

]

6= 0 (3.16)

The minimum distance between two skew lines then occurs to:







s = ‖V12‖2(V34·X3−V34·X1)+(V12·X1−V12·X3)(V12·V34)
(V12·V34)2−‖V12‖2‖V34‖2

t = (V12·V34)s−(V12·X1−V12·X3)
‖V12‖2

(3.17)
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3.3 Euler Angles and Rotation Matrices

The calculation of a rotation matrix in 3D space, from the corresponding

Euler angles around the coordinate axes is straightforward. However, for the

reciprocal one has to assume a sequence of three rotations (three different

axes or two different axes by interchanging their order). Actually, this process

is not injective and then, for a given rotation matrix, there are different

sets of possible generating Euler angles. This section reviews an algorithm

to calculate all different sets of angles that correspond to a given rotation

matrix [117].

Consider the rotation matrix represented by Rot = [Rotij ], with (i, j) ∈
{1, 2, 3} correspondent to the Euler angles ψ, θ and φ performing rotations

about the x1, x2 and x3 coordinate axis respectively.

If Rot31 6= ±1, then we have the following two sets of Euler angles:























θ1 = −asin(Rot31)

ψ1 = atan2
(

Rot32
cosθ1

, Rot33
cosθ1

)

φ1 = atan2
(

Rot21
cosθ1

, Rot11
cosθ1

)























θ2 = π − asin(Rot31)

ψ2 = atan2
(

Rot32
cosθ2

, Rot33
cosθ2

)

φ2 = atan2
(

Rot21
cosθ2

, Rot11
cosθ2

)

(3.18)

On the other and, if Rot31 = ±1, the two sets of Euler angles are:

if Rot31 = −1 if Rot31 = 1


















θ3 = π/2

φ3 = anything, can be set to 0

ψ3 = φ3 + atan2 (Rot12, Rot13)



















θ4 = −π/2

φ4 = anything, can be set to 0

ψ4 = −φ4 + atan2 (Rot12, Rot13)

(3.19)

where asin is the arc-sine and atan2 is the arc-tangent.

These expressions for the sets of Euler angles that corresponds to a given

rotation matrix assume that the matrix Rot is a rotation matrix. A rotation
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matrix respects the following constraints: its determinant is unitary (for a

proper rotation), the norm of each column and row is unitary, it is orthogonal

(RotT = Rot−1) and in what concerns the eigenvalues, they satisfy one of

the following conditions:

• All eigenvalues are equal to 1.

• One eigenvalue is 1 and the other two are equal to -1.

• One eigenvalue is 1 and the other two are complex conjugate of the

form e±iθ.

Another useful property of rotation matrices is that all their singular

values are equal to 1.

However, often the transformation matrix available is not a perfect ro-

tation matrix, since it does not respect the above constraints. The rotation

matrices computed by minimization algorithms usually have this problem.

To recover the Euler angles as accurately as possible, the rotation matrix

should be previously manipulated so that the determinant is unitary and

the corresponding eigenvalues met one of the conditions. Additionally, all its

singular values must be equal to 1. This is easily accomplished by performing

a singular value decomposition.

Consider the rotation matrix Rot and its singular value decomposition

such that Rot = U ·S ·VT , where U and V are orthogonal square matrices

and S is a diagonal square matrix with the Rot singular values in its diagonal.

In a perfect rotation matrix, all these singular values are equal to 1 so matrix

S is the identity matrix. The new corrected rotation matrix can then be

calculated by multiplying the orthogonal matrices U and VT , such that

Rotorth = UVT [113, 114]. Matrix Rotorth is now an orthogonal matrix

and can be used to compute Euler angles with higher accuracy by computing

equation (3.18) or (3.19).
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3.4 Quaternions

Rotations can also be expressed by quaternions, formalized by the mathe-

matician Sir Hamilton in the 19th century. When compared to Euler angles

and rotation matrices, quaternions are sometimes used since the number of

parameters to estimate is smaller (4 parameters using quaternions and 9 us-

ing rotation matrices) and also because, as pointed out by Triggs at al. [131]

generally quaternions present better estimating properties. Usually Euler

angles present some numerical problems and furthermore quaternions have

a behavior closer to linear.

This section reviews the basics of quaternion algebra. For more details

regarding the algebraic properties of quaternions see, for instance [134].

Quaternions are quadruples of real numbers defined as q = [s, (q1, q2, q3)] =

[s,v].

The addition and multiplication of two quaternions qa = [sa,va] and

qb = [sb,vb] are given by:

qa + qb = [sa + sb,va + vb] (3.20)

qaqb =
[

sasb − va
Tvb, savb + sbva + va × vb

]

(3.21)

and the inverse of a quaternion is q−1 = ‖q‖−2 [s,−v].

Quaternions are used to represent position vectors in 3D space such

that a point X = [X1,X2,X3]
T is represented by the quaternion Xq =

[0, (X1,X2,X3)]
T .

Quaternions can also be used to perform rotations about an axis. Suppose

you have a point Xq in space and want to perform a rotation about an arbi-

trary axis. This rotation can be decomposed into three elementary rotations

about the Cartesian orthogonal axis OX1, OX2 and OX3 by, respectively,

θpitch, θyaw and θroll. The equations for the unitary rotation quaternion that
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transforms point Xq are the following:

s = C(θy)C(θp)C(θr) + S(θy)S(θp)S(θr)

q1 = C(θy)S(θp)C(θr) + S(θy)C(θp)S(θr)

q2 = S(θy)C(θp)C(θr)− C(θy)S(θp)S(θr)

q3 = C(θy)C(θp)S(θr)− S(θy)S(θp)C(θr) (3.22)

where θy = θyaw/2, θp = θpitch/2 and θr = θroll/2. C() and S() represent

respectively the cosine and sine of the argument angle.

The equation that transforms point Xq into point X′
q is:

X′
q = qrotXqqrot

−1 (3.23)

where the elementary rotations are performed in the pre defined order given

by qrot = qyawqpitchqroll.

The relation between quaternions and general rotation matrices is given

by:

Rot =









1− 2(q22 + q23) 2(q1q2 − sq3) 2(q1q3 + sq2)

2(q1q2 + sq3) 1− 2(q21 + q23) 2(q2q3 + sq1)

2(q1q3 + sq3) 2(q2q3 + sq1) 1− 2(q21 + q22)









(3.24)

such that the relationship X′ = TX is equivalent to expression (3.23).

If homogeneous coordinates are used, the 4 × 4 transformation matrix

includes the rotation matrix Rot and a translation vector as:

T =

[

Rot t

0 1

]

(3.25)
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3.5 Intersection of Two Quadrics

The parameterization of the intersection of two quadrics is a topic still stud-

ied. As it is used in the development of this dissertation, we here review

one recent method for the computation of this intersection. Dupont et al.

and Lazard et al. [32, 33, 80] presented a method to intersect two general

quadrics. The solution is a quartic curve in space, parameterized by one

scalar parameter.

Before we present the intersection algorithm, some notions about quadrics

and their intersection are first reviewed.

As stated by [116] (Semmple and Kneebone, 1959) the intersection of

two quadrics Q and S is the quartic curve that is also common to all the

quadrics in the pencil defined by λQ +S. Both Levin’s original method and

the Lazard et al. are based in this property of the intersection of quadrics.

The inertia of a quadric is defined by the number of its positive and

negative eigenvalues. Sylvester’s Inertia Law states that the inertia of a

quadric is invariant to a real projective transformation [79]. The inertia of

S is represented by σS = (max (σ+, σ−) ,min((σ+, σ−)), where σ+ and σ−

are the number of positive and negative eigenvalues respectively. Table 3.1

presents all possible inertias, their physical realization and the corresponding

canonical form.

Since this method is, in our work, used to compute the intersection be-

tween a mirror surface, expressed by a non-ruled quadric, and another general

quadric, we assume that one of the quadrics has inertia (3, 1) (say quadric

Q) and make no assumptions about the other one (say quadric S). The

algorithm is now reviewed.
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Table 3.1: Euclidean type of a quadric Q in terms of its inertia.

Inertia of S Affine reduced canonical form Euclidean type of S

(4, 0) x2 + y2 + z2 + 1 = 0 ∅ (imaginary ellipsoid)

x2 + y2 + z2 − 1 = 0 ellipsoid

(3, 1) x2 + y2 − z2 + 1 = 0 hyperboloid of two sheets

x2 + y2 + z = 0 elliptic paraboloid

(3, 0) x2 + y2 + z2 = 0, x2 + y2 + 1 = 0 point, ∅ (imaginary elliptic cylinder)

(2, 2) x2 + y2 − z2 − 1 = 0, x2 − y2 + z = 0 hyperboloid of one sheet

hyperbolic paraboloid

(2, 1) x2 + y2 − z2 = 0, x2 + y2 − 1 = 0 elliptic cylinder, hyperbolic cylinder

x2 − y2 + 1 = 0, x2 + y = 0 cone, parabolic cylinder

(2, 0) x2 + y2 = 0, x2 + 1 = 0 line, ∅ (imaginary parallel planes)

(1, 1) x2 − y2 = 0, x2 − 1 = 0, x = 0 parallel planes, simple plane

intersecting planes

(1, 0) x2 = 0 double plane, ∅
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Algorithm for the intersection of two quadrics:

• Step 1 - Find a quadric R in the pencil R(λ) = λQ − S such that

det(R) > 0 or otherwise det(R) = 0. If there is no such quadric, the

intersection is reduced to two points and if the inertia of R is (4, 0),

the intersection is an empty set.

Notice that as the quadric Q represents the mirror which is a non-

ruled quadric (an ellipsoid, hyperboloid of two sheets or paraboloid),

its determinant is always negative. Therefore, we state R = S.

Levin [81, 82] has proved that there is at least one ruled quadric in

any pencil of quadrics. Ruled quadrics (those quadrics whose inertia

is different from (3, 1)) have positive or zero determinant so this step

is always solvable by first finding the zeros of the determinant of the

upper 3× 3 submatrix of R(λ), a cubic equation. See implementation

details in [32].

• Step 2 - If the inertia of R is different from (2, 2), apply Gauss re-

duction of quadratic forms to R. Compute the linear transformation

matrix P such that PTRP is diagonal. The quadric can then be re-

duced to its canonical form. By Sylvester’s Inertia Law [79], the inertia

of the reduced form quadric Rc = PTRP is the same as the inertia of

R. Choose the appropriate parameterization of the quadric in table 3.2.

If the inertia of R is (2, 2), choose a quadric R′ from the pencil of

quadrics that passes through a point close enough from R and rename

R′ by R.Compute a matrix P such that Rc = PT RP is a diagonal

matrix with the elements in the diagonal equal to (1, 1,−1,−δ), where

δ is a positive rational number. See [32] for details.
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Table 3.2: Optimal parameterization of the projective quadrics Rc of in-

ertia different from (3, 1). The parameterized point Xc satisfy the quadric

equation in its canonical form: Xc
TRcXc = 0. See [32] for the details.

Inertia of Rc Canonical equation Parameterization Xc =
h

x y z w

i

(a, b, c, d > 0)

(4, 0) ax2 + by2 + cz2 + dw2 = 0 Rc is the empty set ∅

(3, 0) ax2 + by2 + cz2 = 0 Rc is a point

(2, 2) ax2 + by2 − cz2 − dw2 = 0 Xc =
h

ut+avs
a

, us−bvt
b

, ut−avs√
ac

, us+bvt√
bd

i

with (u, v), (s, t) ∈ P 1

(2, 1) ax2 + by2 − cz2 = 0 Xc =
h

uv, u2−abv2

2b
, u2+abv2

2
√

bc
, s

i

with (u, s, v) ∈ P 2

(2, 0) ax2 + by2 = 0 Xc =
h

0, 0, u, v

i

with (u, v) ∈ P 1

(1, 1) ax2 − by2 = 0 Xc1 =
h

u,
√

ab
b

u, v, s

i

, Xc2 =
h

u,−
√

ab
b

u, v, s

i

with (u, v, s) ∈ P 2

(quadric in two branches)

(1, 0) ax2 = 0 Xc =
h

0, u, v, s

i

with (u, v, s) ∈ P 2
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In the local canonical frame Rc = PT RP represents the quadric R

in one of the canonical representations parameterized by any Xc of

table 3.2. Compute then the parameterization Xo = PXc of R in the

original coordinate system.

In order to reduce the number of parameters of the parameterization

of Xo and since they are defined up to a scale factor, in P 1 or P 2, it is

possible to state one or two parameters to a fixed scale factor. We thus

state v = 1 (and possibly also t = 1 for the inertia (2, 2) case) in P 1 and

we state s = 1 in P 2 parameterizations. Notice that eliminating the

scale factor dependency, the parameterization is now written in only

one or two parameters.

• Step 3 - Consider the equation Xo
TQXo = 0. By expanding it, one

obtains an equation of degree two in at least one of the parameters u, v

or s. Solve this equation for one of them and compute the domain of the

solution. Then substitute this parameter as a function of the other in

Xo. The equation obtained is the parameterization of the intersection

of Q and S.

This algorithm is optimal in terms of number of irrationals in the solution

and is near-optimal in terms of the size of the solution. As pointed out by

their authors, the introduction of irrationals can highly perturb the accuracy

of the computation. We also emphasize that this algorithm is non iterative

and then adequate to be used in processes that require high performance.
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Chapter 4

Geometry of Catadioptric

Image Formation

The aim of this chapter is the introduction to the framework and the analysis

of the image formation geometry. Some new results are presented on this

topic with a restriction on the projection model of noncentral catadioptric

vision systems with quadric mirrors.

Due to useful properties, homogeneous coordinates are used to express

geometric entities and their relations. Quadrics are expressed by the usual

4×4 symmetric matrix Q = {qij} and lines are defined by the corresponding

Plücker matrices.

Our noncentral catadioptric vision systems are composed by a pinhole

camera and a quadric surface mirror. The position of the camera in relation

to the mirror is not restricted to the symmetry axis.

4.1 Image Formation and the Projection Model

In a catadioptric vision system the light rays are reflected by a specular

mirror in the direction of a light sensor, usually a CCD. Light rays are called

49
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incident before they interact with the specular surface and reflected after this

interaction. In this chapter we are interested in the analysis of the reflection

geometry.

The geometry of the projection of the reflection point is well known and

depends on the camera. The problem is how to find the reflection point where

the light travelling from an arbitrary 3D point is reflected to the image. This

mapping between the 3D points and the image 2D points is the projection

model searched for.

There is a key distinction between central systems and non central sys-

tems. Central projection happens for those systems whose geometry is such

that all incident light rays intersect each other at a unique point, called ef-

fective viewpoint, irrespective of the location of the point reflected to the

image sensor. The image is virtually taken from this viewpoint. When this

unique point doesn’t exist and the incident light rays are skew rather than

concurrent, the system as well as the projection are, by contrary, called non-

central.

For central projection systems the projection model is well studied and

closed form expressions are provided. However, for noncentral projections,

the non existence of an effective viewpoint difficult the geometry of image

formation and as long as the author is aware of there is no closed form explicit

solution for the image point where a given 3D point is imaged. The principles

of physics are then used to understand and formulate the projection model

of noncentral catadioptric vision systems.

There are two principles that describe the reflection process. On one

hand, the Snell’s Law states that the reflection point is the surface point

whose normal vector is the bisector of the incident and reflected light rays

(the reflected ray passes through the known optical center of the pinhole cam-

era). It also states that this normal vector to the surface is within the plane

defined by the optical center, the point to be projected and the reflection
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point (see [59]).

On the other hand, by the laws of the Optical Geometry, it is known that

the reflection point is the one that makes the light path to be the quickest one.

This principle is called Fermat Principle and its first formulation is dated

from 1657, based on the ancient variational principle by Hero of Alexandria

(somewhere between 150 BC and 250 AD) - see [59]. Since these distances

are small and no perturbation happens in the space-time, the quickest path

is also the shortest one and so the total path can be minimized to achieve

the reflection point.

Both Snell’s Law and Fermat principle are sufficient, each one per si,

to find the reflection point. The problem is that the constraints are not

explicit in the image coordinates and to solve them it is necessary to solve

a multidimensional nonlinear system of equations. The dimension of the

problem depends on the formulation. This problem is not difficult to solve

since the expressions are well behaved for the majority of the vision systems

but it is slow and computationally intense.

Assume that the camera center, the quadric mirror and the 3D point to

project into image are known in camera coordinates. Also consider Cartesian

coordinates for the computation of the reflection point on the specular surface

by Snell’s Law and Fermat Principle.

4.1.1 Snell’s Law

By the Snell’s Law, the incident and reflected light rays are at an equal angle

in relation to the normal direction to the mirror surface at the reflection

point r. Furthermore, the same reflection point r, the camera center c and

the point to project p define a plane that contains the normal vector.

Figure 4.1 shows the reflection process where vi is the incident light ray,

vr is the reflected light ray and n is the normal vector to the mirror surface.

The reflection law, in Euclidean coordinates, is then given by the equation:
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vr = vi − 2(vi · n)n (4.1)

R

nvr

vi

specular surface

Figure 4.1: Specular reflection

To express the reflected ray vr we use an additional constraint to the

equation, that all reflected light rays pass through the optical center of the

camera c.

The expression of the 3× 1 normal vector is given by equation:

n =
∂x
∂x1
× ∂x

∂x2

‖ ∂x
∂x1
× ∂x

∂x2
‖

(4.2)

where x =
[

x1 x2 x3

]

is the generic point on the mirror surface whose

coordinates are related by the quadratic surface equation (the quadric mirror

equation (3.9), where for Cartesian coordinates x4 = 1). The quadric surface

equation is then: q11x
2
1 + 2q12x1x2 + 2q13x1x3 + 2q14x1 + q22x

2
2 + 2q23x2x3 +

+2q24x2 + q33x
2
3 + 2q34x3 + q44 = 0.

Since we know the camera center c and the 3D point p, equation (4.1)

can be used in the form:
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c− r

‖c− r‖ =
r− p

‖r− p‖ − 2

(

r− p

‖r− p‖ · n
)

n (4.3)

This equation is not explicit to the reflection point r. It is easy to solve

for r but computationally hard due to all nonlinearities introduced by the

norms (all incident and reflected light rays have unit norm) and by the normal

vector.

4.1.2 Fermat Principle

The reflection point can also be calculated using the Fermat principle. This

principle states that the light always takes the quickest path. So the reflection

point is the one that minimizes the distance between the 3D point p and the

camera center c. Notice that for the order of magnitude of these systems,

no perturbation in the space-time exists and so the quickest path is also the

shortest one.

Since we also know the quadric mirror parameters, it is possible to express

one of the coordinates as function of the other two. We opt to express x3

in relation to x1 and x2. This is done to incorporate the mirror restriction

in the equation of Fermat principle. The coordinates of the reflection point

are then expressed in Cartesian coordinates by r =
[

r1 r2 r3

]

, where the

third coordinate is given by the following equation:

r3 = −1

c
(q13r1 + q23r2 + q34)±

1

2q33

√

F3 (4.4)

where

F3 = (2q13r1 + 2q23r2 + 2q34)−

− 4q33
(

q11r
2
1 + q22r

2
2 + 2q12r1r2 + 2q14r1 + 2q24r2 + q44

)

(4.5)

and the appropriate root must be chosen.
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The distances between r and c and between r and p can now be calculated

and their sum minimized. The total distance is then given by:

dlight =
√

(r1 − c1)2 + (r2 − c2)2 + (r3 − c3)2+

+
√

(r1 − p1)2 + (r2 − p2)2 + (r3 − p3)2
(4.6)

where r3 is given by expression (4.5).

Expression (4.6) can be analytically minimized by any known method.

The expressions obtained are nonlinear and implicit in the coordinates of the

reflection point. It still needs a nonlinear minimization method to compute

numerically the solution.

4.2 A New Projection Model

From equation (4.3) and (4.6) we see that both the Snell’s Law and the

Fermat Principle solve the problem of the reflection point. The solution is

however, implicit, non linear, often unstable and computationally demand-

ing.

In this section we present a projection model that can be applied to

noncentral catadioptric vision systems composed by a quadric surface mirror

and a perspective projection camera. The camera intrinsic parameters, the

quadric and the pose of the camera in relation to the mirror are assumed to

be known. Homogeneous coordinates are used rather than Cartesian. These

issues were partially addressed by Gonçalves and Araújo in [50,51].

Consider then the camera whose optical center is the point C and the

intrinsic parameters matrix is the matrix K. The mirror surface is given

by a quadric Q and is positioned freely in relation to the camera. The 3D

world point P is imaged by the camera and its reflection point over the

mirror surface is the point R. Figure 4.2 shows the reflection process and

the notations adopted.
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Q

C

P

R

NVr

Vi

Figure 4.2: The light rays reflection and imaging in a catadioptric vision

system.

4.2.1 Restrictions imposed on the reflection point

R is the reflection point on the mirror surface that projects the 3D point P

into the image plane passing through the camera center C. For such point

the following three restrictions must be imposed:

1. RT QR = 0 −→ the point is on the quadric of the mirror surface.

2. RT SR = 0 −→ the point is on the quadric given by S = MTQ∗
∞Q

(proposition 5).

Proposition 5 The reflection point R of a catadioptric system with

quadric mirror Q, reflecting a 3D world point P to the camera opti-

cal center C, is on the quadric surface S, given by S = MTQ∗
∞Q,

where Q∗
∞ is the absolute dual quadric, the 4 × 4 matrix M is given
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by expression (3.2) and the plane ΠB is defined by the 3D world point

P, the camera optical center C and the reflection point R itself. The

reflection point R is such that ΠB = MR.

Proof:

Let us consider two concurrent planes: ΠA and ΠB. ΠA is the tangent

plane to the quadric Q at the reflection point R. Its representation is

given by ΠA = QR.

The plane ΠB is the plane defined by three points: the camera opti-

cal center C, the 3D point P and the reflection point R on the mir-

ror surface. Using equation (3.1) the plane coordinates vector can

be defined by a linear equation in the reflected point R as stated by

ΠB = M(P,C) ·R = MR (see equation (3.2)).

Since the normal to the quadric is perpendicular to the tangent plane

and must be on the plane defined by the three points C, P and R,

then the two planes, ΠA and ΠB, must be perpendicular. The angle

between two planes is given by equation (3.3) and since we admit an

Euclidean space, the absolute dual quadric for Euclidean transforma-

tions is given by expression (3.10).

Since θ = π/2 and substituting equations of the planes ΠA and ΠB

into equation (3.3) it yields equation (4.7) which restricts the point R

to be on a quadric surface given by S = MT Q∗
∞Q.

ΠA
TQ∗

∞ΠB = 0⇔ RT QTQ∗
∞MR = 0⇔

⇔ RTMTQ∗
∞QR = 0 (4.7)

Notice that matrix S is not symmetric as the generic quadric matrix.

However, without loss of generality, matrix S can be substituted by
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another matrix whose entries are related by Sij ← 0.5Sij + 0.5Sji.

With this change the quadric remains the same and its representing

matrix becomes symmetric. �

3. The incidence and reflected angles are equal.

The normal line ℓN is the bisector of the angle between incident and

reflection lines. Using equation (3.7), after some simplifications one

obtains:

dir(ℓRC)Tdir(ℓN)
√

dir(ℓRC)Tdir(ℓRC)
=

dir(ℓPR)Tdir(ℓN)
√

dir(ℓPR)Tdir(ℓPR)
(4.8)

The directions ℓRC and ℓPR are defined by the join of two points using

equation (3.6) and ℓN is computed using proposition 4.

4.2.2 Computing the reflection point R

Given the three constraints imposed to the reflection point R, the problem is

now how to find that point. Its explicit closed form computation is however

still not possible. The first and second constraints are much similar since they

restrict the point R to be on quadric Q (constraint (1)) and to be also on

quadric S (constraint (2)). This is the problem of finding the intersection of

those two quadrics (a quartic in space). Since the third restriction constrains

the point so that the incident and reflection angles are equal, point R must

be located on the intersection curve.

The general method for computing an explicit parametric representation

of the intersection between two quadrics is due to Joshua Levin [81,82]. How-

ever, the parametric representation of this method is hard to compute and is

less reliable due to the high number of irrational numbers needed. Dupont et
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al. [32,33] presented a modification of the Levin method to intersect quadrics

with optimal number of irrationals, pointing out that this alternative method

is much more accurate than the original one. This method is reviewed in sec-

tion 3.5.

The parametric curve given by the intersection algorithm is a function of

only one parameter, say λ. Let us represent the parameterized curve by the

4 × 1 vector X(λ). Although nonlinear, the curve can be searched for the

point where incident and reflected angles are equal, that is, where equation

(4.8) holds. Let us call λ0 to the value of the parameter that solves equation

(4.8). The resulting reflection point is given by R = X(λ0). Notice that for

non-ruled quadric mirrors equation (4.8) has only one solution.

This method to find the reflection point R in a noncentral catadioptric

vision system presents a major advantage over the method of using explicitly

the Euclidean expressions of the mirror either using the Snell’s Law (equa-

tion (4.3)) or the Fermat Principle (equation (4.6)). This advantage is the

fact that, once intersected the quadrics Q and S, the solution is given by a

nonlinear equation in only one parameter. This is important for the accuracy

of the solution and also to the computational efficiency of the method since

the intersection of two quadrics can be computed by a non iterative method

(see section 3.5).

4.3 Inverting the projection model

The inverse correspondence between a pixel and a direction in space is also

relevant. In this section it is derived the explicit and closed form solution

for the spatial line that is projected at a given image point. This expression

uses only simple algebra and assumes the knowledge of the mirror quadric

and the intrinsic parameters of the camera.

Consider then the camera centered in C with the intrinsic matrix K.
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The quadric is a non-ruled specular surface whose canonical form is given

by equation (3.11). If T represents the generic position and orientation of

the camera in relation to the quadric, composed by a rotation matrix Rot

and a translation vector t, the quadric mirror is expressed in the camera

coordinate system as:

Qcam = {qij} = T−TQT−1 =

[

Rot t

0 1

]−T

·















1 0 0 0

0 1 0 0

0 0 A B/2

0 0 B/2 −C















·
[

Rot t

0 1

]−1

(4.9)

In camera coordinates, the reflection point R projects to the image plane

through the camera center by the projection equation [58]:

u =
1

λ
K [I|0]R (4.10)

Due to ambiguity it is impossible to recover the reflection point from the

previous equation but one can invert it to recover the ray reflected by the

specular surface, also called emanating ray (see also [93]). This 3× 3 vector

is parameterized as function of λ by:

v = λK−1u (4.11)

The reflection point R(λ) =
[

vT 1
]T

is for the value of λ that veri-

fies equation RTQcamR = 0. By expanding this expression, it yields the

following second degree linear equation in λ:

(

v2
1q11 + v2

2q22 + v2
3q33 + 2v2v3q23 + 2v1v3q13 + 2v1v2q12

)

λ2+

+ (2v1q14 + 2v2q24 + 2v3q34)λ+ q44 = 0
(4.12)
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where here, for convenience, qij represents the element ij of QCAM and vi

represents the i-th component of K−1u.

The appropriate root of equation (4.12), say λ0, is chosen to compute

the reflection point R =
[

λ0(K
−1u)T 1

]T

, whose coordinates depend

on the image point, the camera parameters and the quadric mirror. The

appropriate root to choose depends on the orientation of the vector v. The

point R parameterized should be the first in the positive direction of the

depth coordinate x3. So, the root to choose is the one that has smallest

absolute value (positive if the vector v points in the positive direction of the

x3 axis and negative otherwise).

For this particular case, Euclidean coordinates make it easier to compute

the incident ray vi from the reflected ray vr (reverse of equation (4.1)) and

the normal vector to the mirror (see section 3.1.4).

The reflected ray is the join of the camera center C =
[

0 0 0 1
]T

and

the reflection point R, oriented from the latter to the former. In Cartesian

coordinates it is expressed by the normalized emanating vector, such that:

vr = − λ0K
−1u

‖λ0K−1u‖ (4.13)

The normal vector to the quadric at the reflection point is given by the

three first coordinates of the tangent plane ΠN = QcamR. The normalized

normal is thus given by:

n =
1

∆
·









r1q11 + r2q12 + r3q13 + q14

r1q12 + r2q22 + r3q23 + q42

r1q13 + r2q23 + r3q33 + q34









=
[I3|0]QcamR

‖ [I3|0]QcamR‖ (4.14)

where ∆ is the norm of the vector in the numerator, ri is the i-th component

of the reflection point R and I3 is the 3× 3 identity matrix.
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Although equation 4.1 express the reflected vector as function of the

normal and incident vector, one can compute the incident vector vi, by

inverting the equation, as function of the normal and incident vectors. It is

then written in the form:

vi = vr − 2(vr · n)n (4.15)

As the incident vector and the reflection point are known, the Plücker

matrix correspondent to the incident line ℓi can then be computed using

equation (3.8). The explicit equation depends on the image point coordi-

nates (u), the camera intrinsic parameters (K) and the quadric mirror in

the camera reference frame (Qcam).

The incident ray is thus expressed by its Plücker matrix given by:

Li =

[

λ0K
−1

u

1

]

·
[

−

λ0K
−1u

‖λ0K
−1u‖ − 2 ·

„

−

(λ0K
−1u)T

‖λ0K
−1u‖ ·

[I3|0]QcamR

‖[I3|0]QcamR‖

«

·

[I3|0]QcamR

‖[I3|0]QcamR‖

0

]T

−

−
[

−

λ0K
−1u

‖λ0K
−1u‖ − 2 ·

„

−

(λ0K
−1u)T

‖λ0K
−1u‖ ·

[I3|0]QcamR

‖[I3|0]QcamR‖

«

·

[I3|0]QcamR

‖[I3|0]QcamR‖

0

]

·
[

λ0K
−1

u

1

]T

(4.16)

where R =
[

λ0K
−1u 1

]T

and λ0 is the solution of equation (4.12).





Chapter 5

Method 1: Quadric Mirror

Shape Recovery and

Calibration of Catadioptric

Systems

In this chapter we present a method to recover the shape of the mirror and

calibrate the camera parameters and its position and orientation in relation

to the mirror. The a priori data are the intrinsic parameters of the pinhole

perspective camera and a set of point coordinates in the world reference

frame (or local for simplicity, without loss of generality). Additionally we

address the equations for the use of the apparent mirror contour since it can

improve the accuracy of the results. This method is published in the Journal

of Optical Engineering [53].

63
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5.1 Problem statement

We consider a catadioptric system made up by a camera (perspective or

orthographic) and a quadric surface mirror. The camera is represented by

its intrinsic parameters matrix K (3×3) and the mirror surface by its quadric

matrix Q (4 × 4). The system is fully noncentral such that the pose of the

camera in relation to the mirror is unconstrained and represented by the

screw rigid transformation T (a 4× 4 matrix).

Q is expressed in the quadric coordinate system. It is also expressed

in camera coordinate system by Qcam which is related to the quadric in

canonical form by Qcam = TTQT. We also consider the quadric matrix

given in its block form:

Qcam =

[

Q3cam qcam

qcam
T q44cam

]

(5.1)

Consider now an object in the scene and a set of 3D points Pi with

known coordinates in the reference frame of the local object (or in the world

reference frame). This reference frame is related to the camera coordinate

system by the screw rigid transformation H in such a way that Picam = HPi.

The location and pose of the object in relation to the camera (represented

by the 4× 4 matrix H), is described by three rotations about the coordinate

axes (θX , θY and θZ) and three translations along the same coordinate axes

(tX , tY and tZ). See figure 5.1.

The goal of this chapter is to describe a method for the estimation of

the mirror shape given by the quadric surface Q, the pose of the camera

in relation to the mirror (T) and the pose of the scene points (expressed in

local coordinates) in relation to the camera (H).
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PCAM

image plane

z1
z2

z1
measure

z2
measure

W

CAM

T
Q

H

Figure 5.1: Coordinate systems of the camera, world and mirror and their

relative positions.

5.2 Apparent Contour

The apparent contour of the quadric mirror contains useful information that

can be used to estimate the quadric itself. It reduces the uncertainty in the

estimation of the quadric elements.

As stated in [58], under the camera matrix P the conic C back-projects

to the cone:

Qcone = PTCP (5.2)

where in the case of a perspective camera we have P = K [I|0] and in this

case it yields:
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Qcone =

[

KTCK 0

0T 0

]

(5.3)

On the other hand, [58] also states that the cone with vertex V and

tangent to the quadric Qcam is the degenerate quadric with the equation

given by:

Qcone = (VT QcamV)Qcam − (QcamV)(QcamV)T (5.4)

and if the vertex is at the center of the coordinate system (V =
[

0 0 0 1
]T

)

and the quadric matrix is expressed in block form, the cone is then given by:

Qcone =

[

q44camQ3cam − qcamqcam
T 0

0 0

]

(5.5)

As a result it can be seen that the cones represented in equations (5.3) and

(5.5) are projectively equivalent. That means that the following equations

can be written:



























































q44camq11cam − q14camq14cam = Γ11

q44camq12cam − q14camq24cam = Γ12

q44camq13cam − q14camq34cam = Γ13

q44camq22cam − q24camq24cam = Γ22

q44camq23cam − q24camq34cam = Γ23

q44camq33cam − q34camq34cam = Γ33

(5.6)

where Γij are the elements of the matrix Γ = KTCK. These six equations

correspond to five degrees of freedom since the matrices are symmetric and

projectively equivalent. The five degrees of freedom can be represented inde-

pendently by five ratios. If the last equation is chosen as the reference, the

following five equations are obtained:
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qijcam
=

Γij(q44camq33cam − q34camq34cam) + Γ33qi4camqj4cam

q44cam

(5.7)

where (i, j) ∈ {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3)}. These equations define five

of the quadric mirror parameters as function of the other five, as a function

of the intrinsic parameters of the camera and also as a function of the conic

that represents the quadric apparent contour.

5.3 Nonlinear calibration of the catadioptric sys-

tem

This chapter provides an algorithm to calibrate the mirror, its pose in relation

to the camera and the pose of the camera in relation to 3D world coordinates.

We assume that the intrinsic parameters of the perspective camera are known

as well as the local structure of the 3D calibration scene points.

If the apparent contour (which is a conic in the image plane) of the

quadric surface mirror is visible (or partially visible) in the image it is possible

to estimate its five independent parameters using at least five points (see for

instance [58]). This conic is the 3 × 3 C matrix in equation (5.3) and since

the intrinsic parameters K are known, the back-projected cone from the

apparent contour of the mirror is known. On the other hand, this cone is

projectively equivalent to the cone given by equation (5.5), thus providing

five equations (5.7), used in our method.

Additionally, as the quadric has nine degrees of freedom instead of the

ten which is the number of parameters qij, the scale factor can be fixed if the

value for one parameter is arbitrarily chosen. We may choose for instance

q11 = 1 (however any other value or any other parameter can be chosen)

which reduces the number of unknowns and also removes the scale factor
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ambiguity. This restriction, however, does not prevent the quadric to be an

ellipsoid, a paraboloid or a hyperboloid, the quadrics we study.

The algorithm we propose starts from an initial estimate for all the ten

unknown parameters (four for the quadric Qcam - (q14, q24, q34 and q44) and

six for the screw H - three translations and three rotation angles).

Consider the set of image points pi and their corresponding 3D coordi-

nates Pi in the local coordinate system of the calibration object. These 3D

points have coordinates in the camera coordinate system given by HPi. Back

projecting image points to incident lines in space by using geometric optics

is trivial, giving a line Li for each image point of the set being considered

(see section 4.3).

If the quadric Qcam and the transformation between the camera system

and the local object system H are correct, points HPi belong to the lines Li.

However, in a wrong or noisy configuration, the lines will not pass through

the 3D points HPi. Thus, the distances between these points and the lines

Li can be added to define the cost function to be minimized by any nonlinear

optimization method.

Once estimated, the three rotation angles and the three translations can

be used to compute the transformation matrix H easily. This step is straight-

forward.

Although uniqueness of the solution has not been proved, in experiments

it is in general achieved.

5.4 Quadric Pose Estimation

In this section we describe how the quadric in its canonical form and its pose

in relation to the camera can be estimated starting from the quadric matrix

computed in the camera coordinate frame.

The general quadric can be described by a 4× 4 symmetric matrix Qcam
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such that XTQcamX = 0 holds for all points on the quadric surface. Due to

symmetry the quadric has ten coefficients and nine degrees of freedom.

If the quadric parameters q11 to q44 are computed using some known world

structure (as stated by the previous sections) the corresponding quadric ma-

trix can be diagonalized in such a way as to specify a change of coordi-

nates transforming the quadric into its canonical form. That means that the

coordinate transformation between the camera and the quadric coordinate

frames can be estimated. As a result, the misalignment between the cam-

era and the mirror can also be estimated. In [32, 80] an alternative form

to convert the quadric into its canonical form is proposed, using block di-

agonalization [132, 133]. However this method does not constrain the point

transformation to be rigid as required in our case.

Consider a rigid transformation T made up by a rotation matrix Rot =

{rij} (i, j ∈ {1..3}) and a translation vector t = {ti} (i ∈ {1..3}) and the

quadric mirror in its reduced form given by equation (5.1). The matrix can

be written in the form:

T =

[

Rot t

0 1

]

Q =

[

Q3 q

q′ q44

]

(5.8)

The generic quadric in the camera coordinate system (Qcam) is obtained

through the application of the rigid transformation of the quadric Q by

T. The relationship is Qcam = TTQT. This equation can be expanded to

obtain the following expression:

Qcam =

[

Q3cam qcam

qcam
T q44cam

]

=

[

RotTQ3Rot RotTQ3t + RotTq

tTQ3Rot + qTRot tTQ3t + 2tTq + q44

]

(5.9)

The goal is to estimate linearly the rigid transformation T and the

quadric in its canonical form Q, starting with the knowledge of the quadric
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Qcam. This estimation is impossible since there are more unknowns (twelve

for the transformation and nine for the quadric) than equations. However,

some constraints on the quadric Q allow the recovery of both T and Q. The

quadric mirror for the most general mirrors can also be expressed in the

simpler form:

Q =















1 0 0 0

0 1 0 0

0 0 A B/2

0 0 B/2 −C















(5.10)

and so Q3 is a diagonal matrix whose first two diagonal elements are uni-

tary and q is a 3-vector whose first two components are zero. The mirrors

that we want to study are paraboloids, hyperboloids of two sheets, ellip-

soids and spheres. The constraints that the parameters must satisfy are:

for paraboloids (C = 0; A = 0), for ellipsoids (B = 0), for hyperboloids

(A < 0;C < 0) and for spheres (A = 1;C + B2/2 > 0). By changing the

coordinates in the Z axis for hyperboloids and spheres, the additional con-

straint B = 0 can be applied. It can be seen that using this framework the

parameter B is non zero only for paraboloids and zero for all other mirrors

and also that in the former case the parameter A is zero. We thus have:

• paraboloids - B 6= 0;A = 0;C = 0 =⇒ Q3 =









1 0 0

0 1 0

0 0 0









,

q =
[

0 0 B/2
]T

and q44 = 0

• hyperboloids, ellipsoids and spheres -B = 0;A 6= 0 =⇒Q3 =









1 0 0

0 1 0

0 0 A









and q = 0T .
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The estimation of the rotation matrix Rot and of the first block diagonal

Q3 is performed using the diagonalization obtained by the eigenvalue decom-

position of the matrix Q3cam. This step is simple and as a result we obtain

two matrices such that Q3camV3 = V3D3 where D3 is a diagonal matrix

with the eigenvalues in the principal diagonal and V3 is a full matrix with

their corresponding eigenvectors as columns. Due to the symmetric nature

of quadrics, the eigenvectors matrices are naturally symmetric and therefore

it can be written Q3cam = V3D3V3
T since V3 is orthogonal. Furthermore,

the diagonal matrix D3 can be decomposed in such a way that the central

matrix has the elements in the order required in the diagonal as stated in

equation (5.10). It thus yields:

D3 =









d1 0 0

0 d2 0

0 0 d3









= Pijk ·









di 0 0

0 dj 0

0 0 dk









·PT
ijk = PijkQ3P

T
ijk (5.11)

where Pijk is a permutation matrix possibly necessary to order the eigenval-

ues in the diagonal. Substituting equation (5.11) into the equation of Q3cam

it then holds that:

Rot = (V3Pijk)T Q3 =









1 0 0

0 1 0

0 0 d









(5.12)

which gives the estimates for the rotation matrix and the first 3 × 3 block

of the quadric. Since the quadric is rotationally symmetric, the first two

diagonal elements are equal and can be made, by scaling, equal to 1.

For the remaining unknowns (translation vector t and q44), the elements

qcam e q44cam are used. However, distinct analysis are made for hyperbolic,

elliptic and spherical mirrors and for parabolic mirrors.
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For hyperbolic, elliptic and spherical mirrors, in which case q = 0T ,

one has:

t = Q−1
3 Rot−Tqcam (5.13)

and

q44 = q44cam − tTQ3t (5.14)

which completes the estimation of the pose of the camera in relation to the

quadric mirror for hyperbolic, elliptic and spherical mirrors.

Consider now the case of parabolic mirrors in which case B 6= 0 and

A = 0;C = 0. In this case the diagonal matrix Q3 has only two non zero

elements and so its identification is easy. Expanding now the elements of

qcam the following three linear equations are obtained:



















r11t1 + r21t2 + r31
B
2 = q1cam

r12t1 + r22t2 + r32
B
2 = q2cam

r13t1 + r23t2 + r33
B
2 = q3cam

⇐⇒









t1

t2
B
2









= Rot−Tqcam (5.15)

and finally, expanding the equation for q44cam, the equation to estimate the

last unknown is:

t3 =
q44cam − t21 − t22

B
(5.16)

since q44 = 0.

Therefore we have shown that it is possible to recover the pose of the

mirror in relation to the camera and the misalignment of both (as long as

the quadric matrix is known in the camera coordinate system). Notice,

however, that noise can perturb the identification of parameters whose value

is zero. In this case, additional information about the mirror or an exclusion
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test can be used to disambiguate (since in our framework B = 0 or A = 0,

exclusively).

5.5 Experiments

We show the usefulness of the method described by applying it to simulated

data and also to real images. We estimate the quadric that describes the

mirror surface, its pose in relation to the camera and the pose of the camera

in relation to the world reference frame.

This section starts by presenting the results with simulated data. Two

different camera/mirror configurations are considered: a perspective camera

with a spherical mirror with a 37.5mm of radius (the camera and the mirror

are not aligned) and an orthographic camera with a parabolic mirror in a

paracatadioptric configuration (the axis is aligned with the mirror).

The algorithm tries to minimize the error cost function using two known

minimization methods that are combined: a genetic algorithm and the sim-

plex Nelder-Mead method. Successive runs of both methods, one at a time,

led to solutions.

Convergence was tested in two different initial conditions. In the first case

we added some noise (Gaussian distribution with zero mean) to the ground

truth values to use as initial values. The algorithm was then run until one

of the stopping conditions was achieved. The stop conditions adopted are:

1. The error is smaller than a tolerance value (e.g. 1e−5);

2. A predefined maximum elapsed time was reached;

3. Unchanged error value for a predefined time interval (local minimum).

In the second case we start the experiment by using a random vector for

the initial values of the parameters to be estimated. We performed several
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runs of the algorithm, usually between 10 and 100, using different random

starting values and, in the general case, when the stopping conditions are met

the estimates obtained are close to the optimal values. Next, these results are

used to rerun the genetic algorithm as starting chromosomes. The algorithm

was again iterated until one of the stopping conditions was met.

We noticed no difference between the results in both tests. This indicates

that the convergence is in general obtained irrespective of using or not values

close to the ground truth.

Table 5.1 presents median values of the results obtained for the param-

eters and the corresponding ground truth values (perspective camera with

spherical mirror). Table 5.2 presents the same analysis for the paracatadiop-

tric system.

As it can be seen from the results with simulated data, the quadric in

the camera coordinates Qcam (which integrates both the quadric Q in the

canonical form and the pose T) and the pose H are estimated accurately. The

estimates for the actual values of Q and T are not computed for simulated

data since the equations presented are in closed form and their values are

highly accurate. They are however computed in the experiments with real

images.

In the experiments with real images, we present the results obtained with

a noncentral catadioptric system made up by a perspective camera and a

spherical mirror. The same camera is also used in a hyperbolic configuration.

The camera used was a commercial CANON EOS 350D with image size

3456x2304. The spherical mirror has a radius of 37.5mm. The systems

were previously calibrated using a two step algorithm by first estimating the

perspective camera parameters and then calibrating the mirror. The mirrors

were not perfectly aligned with the camera. Figure 5.2 displays an image

acquired by both cameras.

The calibration object used to calibrate the camera and to test the al-
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Table 5.1: Tests with simulated data for a perspective camera with an off-

axis spherical mirror configuration. This table presents median values of

the results. Notice that the parameters of the error random distribution

(top row) are in relation to the ground truth values of the parameters. GT

means ground truth, N(,) means normal error distribution and Unif(,) means

uniform error distribution.

GT GT+err(∼

N(0; 0.5))

Random ∼

Unif(0; 1)

Random ∼

Unif(0; 2)

Random ∼

Unif(−1; 1)

Random ∼

Unif(−2; 2)

q14 32.0 33.18 31.78 32.23 33.23 31.06

q24 16.0 16.83 15.28 17.31 17.36 17.09

q33 -150.0 -147.14 -149.95 -152.48 -153.04 -144.10

q34 2.000e4 2.190e4 2.247e4 2.256e4 2.146e4 2.301e4

θX 0.0 -0.01 -0.01 0.01 0.00 -0.01

θY 0.0 0.00 0.01 0.01 0.00 0.01

θZ 0.0 0.00 0.01 0.01 -0.01 0.00

tX 0.00 0.00 -0.00 -0.01 -0.01 -0.01

tY 0.0 0.01 0.00 -0.00 0.01 -0.02

tZ -300.0 -296.84 -303.14 -298.59 -298.82 -299.47
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Table 5.2: Tests with simulated data. The configuration is made up of an

orthographic camera with an aligned parabolic mirror. This table presents

median values of the results. Notice that the parameters of the error ran-

dom distribution (top row) are in relation to the ground truth values of the

parameters. GT means ground truth, N(,) means normal error distribution

and Unif(,) means uniform error distribution.

GT GT+err(∼

N(0; 0.5))

Random ∼

Unif(0; 1)

Random ∼

Unif(0; 2)

Random ∼

Unif(−1; 1)

Random ∼

Unif(−2; 2)

q14 0.0 0.00 -0.00 0.00 0.01 0.01

q24 0.0 0.01 -0.00 -0.01 -0.02 0.00

q33 -600.0 -587.39 -605.24 -600.39 -599.15 -589.31

q34 1.800e5 1.785e5 1.781e5 1.780e5 1.778e5 1.843e5

θX 0.0 -0.00 -0.00 0.01 -0.01 0.00

θY 0.0 -0.01 -0.00 0.01 -0.01 0.01

θZ 0.0 -0.01 -0.00 -0.00 0.00 0.01

tX 0.0 0.01 0.02 -0.02 -0.00 -0.01

tY 0.0 0.00 -0.01 0.00 0.00 -0.01

tZ -300.0 -296.52 -292.72 -308.60 -298.01 -299.61
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(a) Spherical mirror

(b) Hyperbolic mirror

Figure 5.2: Real images used.
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gorithm can be planar or non-planar. Non-planar calibration objects usu-

ally yield better calibration results since their non-planar structure inher-

ently provides additional information. However, tests performed with planar

patches proved to provide estimates with good accuracy. Planar patterns

have the advantage of simplicity. We chose to use planar patterns in the ex-

periments with the hyperbolic mirror and with the spherical mirror we used

non-planar objects to test the method.

Additionally, since in the case of the hyperbolic mirror the apparent con-

tour of the quadric mirror is not visible (because the mirror is a hyperboloid

cut by a plane) we present the results without using the apparent contour

information.

First we present the results concerning the spherical mirror configuration.

As in the case of simulated data, the accuracy of the method is tested in two

ways namely by using initial values for the parameters that are obtained by

adding some noise to the true values and also by starting the iterations with

random values for the parameters. Monte Carlo methods are applied and

the results obtained are presented in table 5.3 for the case of the spherical

mirror using the apparent contour and in table 5.4 without using the apparent

contour.

Using the hyperbolic mirror, the experiments are similar and their results

are presented in table 5.5.

The results obtained in the experiments with real images show that es-

timates for the quadric mirror parameters in the camera coordinate system

(Qcam) and for the pose of the camera in the world reference frame (H) can

be obtained with good accuracy. The use of the apparent contour allows for

a drastic improvement of the accuracy of the estimates.

The next step is the estimation of the parameters of the quadric mirror in

its canonical form (Q) and the estimation of its pose in relation to the camera

- (T). For that purpose we use the equations of section 5.4. Since the mirror
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Table 5.3: Tests with real images obtained from a perspective camera with

a spherical mirror. Median values of estimated parameters for the quadric

mirror in the camera coordinate system - Qcam and for the pose of the

camera in relation to the world reference frame - H, using the apparent

contour to reduce the uncertainty. Notice that the parameters of the error

random distribution (top row) are in relation to the ground truth values of the

parameters. GT means ground truth, N(,) means normal error distribution

and Unif(,) means uniform error distribution.

GT GT+err(∼

N(0; 0.5))

Random ∼

Unif(0; 1)

Random ∼

Unif(0; 2)

Random ∼

Unif(−1; 1)

Random ∼

Unif(−2; 2)

q14 -0.18 0.01 0.56 0.64 0.17 0.16

q24 11.67 11.75 9.97 10.41 11.30 11.04

q33 -272.46 -269.54 -269.30 -280.18 -286.35 -279.64

q34 7.296e4 7.140e4 7.128e4 7.716e4 8.056e4 7.686e4

θX 0.00 -0.00 0.00 0.00 -0.00 -0.00

θY 0.00 -0.00 -0.00 -0.00 -0.00 -0.00

θZ 0.00 0.00 0.00 0.00 0.00 0.00

tX 50.00 50.71 51.90 51.97 50.80 50.83

tY 50.00 50.41 49.47 49.08 49.77 50.04

tZ -300.00 -302.60 -303.18 -293.31 -287.40 -293.53
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Table 5.4: Tests with real images obtained from a perspective camera with

a spherical mirror. Median values of the estimated parameters for the

quadric mirror in the camera coordinate system - Qcam and for the pose

of the camera in relation to the world reference frame - H, not using the

apparent contour. Notice that when the apparent contour is not used

the algorithm only converges to the solution with good initial parameter

estimates. Also notice that the parameters of the error random distribution

(top row) are in relation to the ground truth values of the parameters. GT

means ground truth, N(,) means normal error distribution and Unif(,) means

uniform error distribution.

GT GT+err∼

N(0; 0.5)

Random∼

Unif(0; 1)

Random∼

Unif(0; 2)

Random∼

Unif(−1; 1)

Random∼

Unif(−2; 2)

q11 1.00 1.00 -4.18 -51.86 0.97 -11.59

q12 0.00 -0.00 0.36 -0.41 -0.00 0.37

q13 0.00 0.00 1.21 -1.34 0.00 1.75

q14 -0.18 -0.19 0.72 -37.40 -0.28 229.81

q22 1.00 1.00 -4.63 -53.23 0.97 -12.10

q23 0.00 0.00 1.13 -1.92 0.00 2.16

q24 11.67 11.50 0.92 44.17 7.74 404.01

q34 -272.46 -268.90 0.11 -268.98 -187.28 -161.46

q44 72964.16 71074.54 -0.30 -22139.85 34502.16 -66674.35

θX 0.00 0.00 -0.08 3.02 0.00 -0.08

θY 0.00 0.00 0.21 -3.03 0.00 0.08

θZ 0.00 0.00 0.03 -3.13 0.00 0.01

tX 50.00 49.99 -34.41 108.32 49.74 20.44

tY 50.00 50.12 107.27 122.11 52.95 111.54

tZ -300.00 -303.25 -505.44 -551.32 -378.04 -663.26
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Table 5.5: Tests with real images obtained from a perspective camera with

a hyperbolic mirror. Median values of the estimated parameters for the

quadric mirror in the camera coordinate system - Qcam and for the pose

of the camera in relation to the world reference frame - H, without using

the apparent contour. Notice that the parameters of the error random

distribution (left column) are in relation to the ground truth values of the

parameters. GT means ground truth, N(,) means normal errors distribution

and Unif(,) means uniform error distribution.

GT GT+err∼

N(0; 0.005)

GT+err∼

N(0; 0.01)

GT+err∼

N(0; 0.05)

GT+err∼

N(0; 0.1)

GT+err∼

N(0; 0.5)

GT+err∼

N(0; 1.0)

q11 1.00 1.00 1.01 0.93 1.59 2.60 -10.06

q12 0.00 0.00 0.00 0.01 -0.03 0.15 -8.24

q13 0.00 -0.00 -0.00 0.03 0.07 -0.01 1.16

q14 4.11 4.45 4.48 -1.74 -11.67 11.30 -2323.02

q22 0.00 -0.00 0.00 -0.01 -0.06 -0.01 0.29

q23 -5.14 -5.14 -5.18 -3.43 17.92 -7.77 -1480.27

q24 -0.76 -0.76 -0.75 -0.73 -0.42 -1.12 -0.06

q34 138.02 137.82 137.32 143.04 80.84 194.75 166.29

q44 -24436.7 -24358.40 -24356.89 -27326.14 -10872.63 -29178.30 -357550.1

θX 0.00 0.00 -0.01 -0.01 -0.35 0.11 -0.29

θY 0.00 0.00 0.01 -0.02 0.07 0.08 -0.05

θZ 0.00 -0.00 0.00 -0.02 0.09 0.02 0.26

tX 50.00 47.95 43.60 56.52 47.74 4.09 -166.45

tY 50.00 47.92 54.09 53.88 244.74 33.07 254.14

tZ -300.00 -300.96 -299.00 -277.94 -152.44 -307.41 -177.92
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Table 5.6: Experimental results with real images obtained by a perspective

camera with a spherical mirror. Estimated values for the pose of the mirror

in relation to the camera - t and for its radius, using the apparent contour.

t1 t2 t3 Radius Rel. err (%)

GT -0.1837 11.667 -272.46 37.5 •

GT+err(∼ N(0; 0.5)) 0.01 11.64 -266.87 37.14 0.97

Random (∼ Unif(0; 1)) 0.56 9.92 -267.73 37.01 1.30

Random (∼ Unif(0; 2)) 0.64 10.34 -278.45 38.51 2.70

Random (∼ Unif(−1; 1)) 0.16 11.22 -284.22 39.45 5.20

Random (∼ Unif(−2; 2)) 0.16 10.96 -277.57 38.53 2.74

is a sphere, the translation between the camera and the center of the mirror

and its radius are the ones that are meaningful, since the rotation parameters

do not change the sphere position and orientation for vision system purposes.

Tables 5.6 and 5.7 show the results obtained for the calibration parameters

when the apparent contour is used and not used respectively. The rotation

matrix Rot is hence not shown since due to the nature of the mirror any

other rotation would express the same mirror (as the orientation of a sphere

is meaningless).

From the results one can conclude that the radius of the mirror surface is

obtained with high accuracy in all cases where the apparent contour is used.

In the cases where the apparent contour is not used, accurate estimates for

the radius can only be obtained if the initial values for the parameters are

close to their optimal values.

For the hyperbolic mirror, the results for the estimates of the quadric

mirror parameters and for its pose in relation to the camera are presented in

table 5.8.

It should be remarked that the results in experiments showed that a good
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Table 5.7: Experimental results with real images obtained by a perspective

camera with a spherical mirror. Estimated values for the pose of the mirror

in relation to the camera - t and for the radius, without using the apparent

contour. Notice that when the apparent contour is not used the algorithm

only converges to the solution if started with good initial estimates.

t1 t2 t3 Radius Rel. err (%)

GT -0.1837 11.667 -272.46 37.5 •

GT+err(∼ N(0; 0.5)) -0.19 11.50 -268.90 36.98 1.40

Random (∼ Unif(0; 1)) 5.09 9.42 -7.79 18.54 50.55

Random (∼ Unif(0; 2)) -1.07 79.39 -50.32 58.03 54.76

Random (∼ Unif(−1; 1)) -0.28 7.74 -187.27 25.19 32.83

Random (∼ Unif(−2; 2)) -19.32 13.76 262.19 39.78 6.09

Table 5.8: Experimental results with real images obtained by a perspective

camera with a hyperbolic mirror. Estimated values for the pose of the

mirror in relation to the camera - t and for the radius, without using the

apparent contour. Notice that when the Gaussian error introduced is very

high, the algorithm does not converge to an useful solution.

θ1 θ2 θ3 t1 t2 t3

GT 0.0 0.0 0.0 4.11 -5.12 -181.42

GT+err(∼ N(0; 0.005)) 0.00 -0.00 -0.40 4.87 -4.49 -182.12

GT+err(∼ N(0; 0.01)) 0.00 -0.00 0.48 0.83 -7.30 -183.33

GT+err(∼ N(0; 0.05)) -0.00 0.18 -0.31 13.83 0.75 -190.05

GT+err(∼ N(0; 0.1)) 0.01 -0.01 0.12 2.73 -9.33 -203.45

GT+err(∼ N(0; 0.5)) 0.77 -1.40 0.88 2.02 54.50 0.44

GT+err(∼ N(0; 1.0)) 0.51 -0.37 0.02 21.99 179.46 -3159.41
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estimate for the conic corresponding to the apparent contour of the mirror is

very important for the accuracy of the results. This is the most sensitive set

of parameters and small errors in their values can cause much higher errors

in the estimation of all the other parameters.

Reprojection error

In order to have an exact idea of how erroneous is the estimation and what

implications it does have in the calibrated model, we reproject the 3D points

to the image and compare the actual and recomputed pixel locations. Figure

5.3 shows some cases of reprojected points and the actual pixels, using some

results obtained with the spherical mirror, with and without the apparent

contour information.

Consider the state vector as the estimated parameters vector composed

by the pose elements of the camera in relation to the mirror and in relation

to the world reference frame and also by the mirror shape parameters.

Table 5.9 presents some additional cases and the average errors per pixel.

Table 5.9 presents results obtained with all the spherical mirror data (con-

tour and no contour) and with the hyperbolic mirror. The corresponding

amplitude and angle error of the estimated state vector are presented in-

stead of the relative errors for each parameter, as presented in the previous

tables, for data compactness.

As seen in table 5.9, the reprojection error per pixel grows with the error

in the estimated values. However, it can also be observed that even to poor

accurate state vectors (such that the amplitude and angle errors are above

5% − 10%), the reprojection error is sometimes low. This can be explained

by the fact that the parameters contribute heterogeneously for the image

formation and these estimated state vectors conduce to a reasonably good

projection. At this stage it is, however, difficult to infer the differences in

the influence of the calibration parameters concerning the projection.
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a) b)

c) d)

e) f)

Figure 5.3: Reprojection of the 3D points in the image. The left column

presents results obtained using the apparent contour and the right column the

results obtained without using the contour. In (a)-(b) the initial estimate is

the ground truth vector with Gaussian noise added, with standard deviation

of 50% of the actual value, in (c)-(d) the initial estimate is a random vector

between 0 and 1 (0 → 100% of the actual value) and in (e)-(f) the initial

estimate is a random vector between -1 and 1 (−100% → 100% of the actual

value).
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Table 5.9: Reprojection error of 3D points (in pixels) and the corresponding

amplitude error (in percentage) and angle errors (in degrees) of the estimated

state vectors.

Mirror Contour Initial

estimate

Amplitude

error

Angle error Reproj.

error

Spherical Yes GT+N(0;0.5) 0.15 0.16 0.01

Spherical No GT+N(0;0.5) 1.34 1.46 0.03

Spherical Yes Random

∈ [0, 1]

0.28 0.32 0.02

Spherical No Random

∈ [0, 1]

525.43 92.62 61.18

Spherical Yes Random

∈ [0, 2]

1.83 2.16 0.16

Spherical No Random

∈ [0, 2]

626.60 74.87 62.81

Hyperbolic No GT+N(0;0.005) 0.36 15.48 0.02

Hyperbolic No GT+N(0;0.01) 3.99 6.66 0.04

Hyperbolic No GT+N(0;0.05) 27.14 37.55 0.13

Hyperbolic No GT+N(0;0.1) 119.12 71.61 0.38

Hyperbolic No GT+N(0;0.5) 502.50 89.74 9.98

Hyperbolic No GT+N(0;1.0) 385.62 66.98 12.00
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5.6 Summary and Conclusions

In this chapter we presented a method to calibrate catadioptric systems made

up by a perspective or orthographic camera (whose internal parameters are

considered to be known) and a curved mirror whose shape is mathemati-

cally expressed by a non-degenerate quadric (includes spherical, hyperbolic,

parabolic and elliptic mirrors). The method requires the knowledge of the in-

trinsic parameters of the camera and also local world calibration information

(for instance distances in a calibration pattern).

The method allows for the use of the apparent contour of the mirror

(which is a conic) to constrain the quadric mirror and its pose in relation to

the camera and then applies a nonlinear iterative minimization method to

match some back projected pattern points to a 3D grid. This method first

estimates the pose of the camera in relation to the world reference frame and

the quadric mirror in camera coordinates. In the second step, using closed

form expressions, it estimates the camera in its canonical form and its pose.

Experimental results showed that the method is accurate both with sim-

ulated data and with real images, even when the initial estimates (required

by the nonlinear optimization procedure) are completely random, specially

if the apparent contour is used. The calibration objects used in the experi-

ments can be planar and non-planar. It was concluded that the estimation of

the conic parameters corresponding to the mirror apparent contour is critical

to the accuracy of the results.

To understand how the estimation errors in the parameters affects the

calibration of the catadioptric system, we reprojected the 3D points to the

image. It was observed that when the apparent contour was used (and if

their conic parameters was acquired with accuracy), the reprojection error is

small, indicating a good calibration result. However, if the contour was not

used, the results are more degraded.
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In what concerns the computer efficiency of the method, for the mini-

mization of the cost function, we used two nonlinear minimization algorithms

simultaneously: the simplex Nelder-Mead method and a genetic algorithm.

Both methods use a strategy based on several iterations providing a slow

convergence and so they are computationally demanding. Besides that, they

provide well-behaved convergence.

Finally, our conclusion about this method is that it provides trustable

results if some conditions are met. These conditions are the accurate calibra-

tion of the primary optical element, the camera, by its intrinsic parameters

K, extremely accurate computation of the conic elements of the apparent

contour C and non-planar calibration objects are used.



Chapter 6

Method 2: Estimating

Parameters of Noncentral

Catadioptric Systems using

Bundle Adjustment

In this chapter we present a new method for the estimation of the parameters

of a noncentral catadioptric system using bundle adjustment techniques. The

key idea is to relax Snell’s Law to a set of incident light rays, projecting

their intersecting point with the quadric mirror to the image and minimizing

the reprojection error as done in the usual bundle adjustment method for

camera calibration. The relaxation of Snell’s Law is necessary since there is

no closed-form projection model for these vision systems (see chapter 4).

We are interested in the estimation of the intrinsic and extrinsic parame-

ters of general catadioptric systems with quadric mirrors regardless of being

central or not. The method is composed by two steps. In the first one the

system is calibrated in the sense of a black box model, that is, we assume

89
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that the correspondence pixel ←→ 3D line is provided by using Grossberg

and Nayar method [55], Sturm and Ramalingam method [123] or by some

other method. We opted to use known motion between dense calibration

grids to perform a stable ray calibration.

The second calibration step proposed by the method is the application

of the class of bundle adjustment methods for camera calibration to general

(central or not) catadioptric vision systems. The explicit computation of

the Jacobian of the projection equations is possible due to the relaxation of

Snell’s law constraint. The non existence of closed-form equations for the

projection (and hence the non existence of a way to provide an estimate for

the coordinates of the reflection point on the mirror surface) is circumvented

by the fact that there are available correspondences between pixels and lines

in space and not between pixels and points in space. The intersections be-

tween the direction rays and the mirror surface thus provide the reflection

points.

Bundle adjustment is then applied to the projection model by using the

following parameterization: intrinsic parameters of the pinhole camera (5

parameters), position and orientation of the camera in the world reference

frame (three rotation angles and three displacements - 6 parameters), the

quadric mirror shape parameters in canonical form (3 parameters) and the

position and orientation of the camera in relation to the mirror (three ro-

tation angles and three displacements - 6 parameters). The total number

of parameters of the state vector is 20. We show that bundle adjustment

methods are suitable for the calibration of general catadioptric systems and

that the convergence is generally achieved both in experiments with simu-

lated data and in experiments with real images. Since bundle adjustment

methods require an initial estimate for the state vector, we also provide an

automatic algorithm to compute the initial estimates.

Rotations are parameterized by Euler angles. As is widely known, usually
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Euler angles present stability and numerical problems due to their high non

linear nature. This problem is solved by using frozen (or cumulative) and

update rotation matrices in the bundle adjustment optimization algorithms.

The current estimate in each iteration is frozen in a rotation matrix and the

derivatives are evaluated in the update angles rather than in the accumulated

ones. This strategy provides very simple Jacobian expressions. After the

update state vector is computed, the next iteration starts by accumulating

the last update in the frozen angles.

This method was published in the 6th Workshop on Omnidirectional

Vision, Camera Networks and Non-classical Cameras Workshop in conjunc-

tion with the International Conference on Computer Vision (October 2005,

Beijing, China) [52]. An extended and revised version with several enhance-

ments was recently accepted to be published at the Computer Vision and

Image Understanding Journal (CVIU) [54].

6.1 Problem statement

Consider the camera coordinate system as the reference frame. Consider now

a catadioptric vision system made up of a pinhole camera whose intrinsic

parameters are given by matrix K:

K =









fu ν u0

0 fv v0

0 0 1









(6.1)

and a specular mirror surface given by the quadric in its canonical form:
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Q =















1 0 0 0

0 1 0 0

0 0 As Bs

0 0 Bs −Cs















(6.2)

.

The camera is positioned in the center of the main reference frame and

its poses (position and orientation) in relation to the quadric mirror and to

the world reference frame are given by T and H respectively.

T =

[

Rot(θC, θB, θA) tT

0T 1

]

(6.3)

and

H =

[

Rot(θ3, θ2, θ1) tH

0T 1

]

(6.4)

where θA, θB and θC are the rotation Euler angles of the pose camera-mirror

and θ1, θ2 and θ3 are the rotation Euler angles of the pose camera-world. The

rotation matrices Rot are the concatenation of elementary rotation matrices

around a single axis. tT = {tT i} and tH = {tHi} with i ∈ {1, 2, 3} are the

translational vectors for the poses considered.

Consider now a set of correspondences between pixel (u, v) in the image

plane and a 3D line expressed in the world coordinate system. The lines in

space are represented by two points A and B also expressed in the world

coordinate frame. Figure 6.1 shows the relative position of the camera and

the set of lines in space representing the incident light rays.

The aim of this method is to achieve the calibration of the intrinsic and

extrinsic parameters of the general catadioptric vision system. Using the

framework presented so far, the parameters to calibrate are then K, Q, T

and H
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Q

B1

A1

A2

B2 PCAM

W

Figure 6.1: World reference frame and the catadioptric system.

Bundle adjustment methods require one cost function that depend on

the parameters to be estimated. The computation of its Jacobian either by

analytical expressions or numerical derivations can be used to enhance the

accuracy and performance of the methods. Usually this class of methods are

used with projection models that map 3D points in space into image points.

The cost function is often the weighted sum of the squared errors which are

the Euclidean difference between the measured position of the point in the

image and the estimated or predicted one. However, in our framework we do

not use points to project but rather use correspondences between lines in 3D-

space and points in the image plane. Furthermore, additional information

can be used to enhance the convergence of the method. Other methods that

do not employ Jacobian can also be used. In the next section we derive the

equations for the projection model 3D line←→ image point and its Jacobian.
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6.2 Projection model

An explicit projection equation for a general catadioptric vision system does

not exist, although for the particular case of central cameras this expression

is known. Such lack is due to the nature of specular reflection and image

formation, which are highly nonlinear, well modeled by an implicit equation.

Specular reflection is modeled by Snell’s Law. According to Snell’s Law

the incident and reflection angles are equal. If we backproject a pixel, the

reflection ray is easily found out (by means of an explicit closed-form equa-

tion).

However, if an arbitrary incident ray in the specular surface is considered,

it may or may not be projected through the optical center of the camera

and imaged at a pixel. Additionally, when projecting the ray by using the

reflection laws, there are usually multiple mathematical solutions and the

selection of the real one is sometimes not trivial.

In our model this Snell’s Law constraint is relaxed to allow the analytic

computation of a corresponding image pixel to any ray in space that inter-

sects the specular surface. Without this simplification and considering the

projection model to be the real specular case, most of the incident rays would

not be imaged (since they would not pass at the camera optical center) and

then there would not be an error measurement to minimize.

Our projection model is rather simplified by considering the projection

in the image of the reflection point, computed as the intersection between

the 3D line in space and the quadric surface as shown in figure 6.2. The

error resulting from not considering Snell’s Law is taken into account by

incorporating it in the bundle adjustment cost function. This is done by

computing the difference between the unit directions of the reflected rays

according to Snell’s Law and to our projection model (by directly projecting

it into the image relaxing the projection law).
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Q

PCAM

image plane

A1
B1

A2

B2

z1

z2

z1
measure

z2
measure

Figure 6.2: Projection model mapping lines in space (given by couples of

points Ai and Bi) to pixels in the image. Notice that Snell’s law is relaxed

so that the incident and reflection angles are not constrained to be equal.

Before computing the reflection point RCAM and projecting it into im-

age, we must first express every geometrical entity in the camera reference

system. Points Aw and Bw (3 × 1 vectors) belonging to the incident ray

are expressed in world coordinates. Their expressions in the camera coor-
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dinate system are simply
[

A 1
]T

= H
[

Aw 1
]T

and
[

B 1
]T

=

H
[

Bw 1
]T

.

The mirror surface, expressed in the canonical form by Q, is also ex-

pressed in the camera coordinate system as QCAM = T−TQT−1 (notice

that in relation to the method in previous chapter we opted to use here the

transformation T in the inverse sense). By replacing matrices T and Q by

their expressions, one obtains bilinear equations that depend on the quadric

shape parameters (As, Bs and Cs) and on the camera-mirror pose transfor-

mation (tT 1, tT 2, tT 3, θA, θB and θC). The explicit expressions are presented

in appendix.

The reflecting point RCAM is then a point belonging to the line that

join points A and B and also that is on the quadric surface QCAM. Its

expression can be written in the form RCAM = A + α (B−A) where the

parameter α is the solution of the equation corresponding to incidence on

the quadric:

[

RCAM
T 1

]

QCAM

[

RCAM

1

]

=

=
[

AT + α (B−A)T 1
]

Q

[

A + α (B−A)

1

]

= 0 (6.5)

Equation (6.5) is a quadratic equation on α that depends on the quadric

mirror coefficients and also on points A and B that define the line in space.

The reflection point on the mirror surface is then obtained by selecting the

appropriate root of the quadratic equation.

The selection of the appropriate root is also important to the projection

model and depends on the relative position of points A and B and on their

position in relation to the quadric surface too. Generally the approach is

to admit some simple relationship over the points and quadric that permits
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us to choose the right root. As the points A and B are computed from the

incident ray and they are usually points in scene objects, we admit that they

are both actually imaged (that is to say that they are not in the occluded

or virtual part of the ray). If an additional assumption is made, that the

point A is closer to the quadric than the point B (which is easily achieved by

interchanging them if this is not true), then the appropriate root is simply

the one with the smallest absolute value. Another approach is to project

both points and choose the one with the smallest reprojection error.

Once obtained the reflection point RCAM, its projection in the image

plane is given by:

z =









z1

z2

z3









= λKRCAM (6.6)

where K is the matrix of the intrinsic parameters and λ is the scale factor.

Since we are interested in the image coordinates themselves, to eliminate the

scale factor we divide the first two coordinates by the third. Expanding their

equations it yields:







u = z1
z3

=
fuRCAM1

+νRCAM2
+u0RCAM3

RCAM3

v = z2
z3

=
fvRCAM2

+v0RCAM3
RCAM3

(6.7)

which is the projection model for an arbitrary catadioptric system consider-

ing that the correspondences between pixels←→ incident lines are provided.

We emphasize that this projection model is an approximation since it re-

laxes Snell’s Law of reflection. This is done in order to obtain closed form

projection equations to use in bundle adjustment (a complete closed form

expression is achieved once selected the appropriate root of a second-order

polynomial). The errors due to the approximation in this model are mini-

mized by the nonlinear optimization algorithm, as discussed in section 6.4.
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6.3 Ray Calibration

The first step of the algorithm is performed by calibrating the rays that are

subsequently used in the state vector estimation.

As mentioned in the introduction, the ray calibration is made by applying

a known motion transformation to the camera (or to the scene) and by

estimating for each pixel the new world coordinates of the point imaged.

This is done by inverting a homography between 3D and image planes as

described in [123]. We briefly review it.

Consider a pixel with image coordinates (u, v). Consider that in the first

image the 3D point that is projected into image has known world coordinates

A. Suppose now that a given motion transformation Mot is applied to the

camera (or to the objects in the scene as a whole) such that the coordinates

of the points became Â = Mot ·A and that the n neighboring points in

the second image are B̂i with i ∈ {1..n} with also known world coordinates

(B̂i = Mot ·Bi). Consider that the image points corresponding to the n

neighboring points are (ui, vi).

To calibrate the line that is projected by the vision system to the pixel

(u, v) one has to know at least two points of the line. One of the points is

already known, that is, the point A and the other one can be calculated by

interpolating the coordinates of the points in its neighborhood X3D.

This calculation assumes that the projection is continuous in a neigh-

borhood of the points, say a radius of rad pixels, and that all points are

coplanar (although the image is actually from a curved surface). The ho-

mography Hom relates coplanar points as ximg = HomX3D or:









u

v

1









=









hom11 hom12 hom13

hom21 hom22 hom23

hom31 hom32 hom33

















X

Y

Z









(6.8)
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The homography is calculated by expanding this equation for the n neigh-

boring pixels and estimating its nine parameters by using:















Xi Yi Zi 0 0 0 0 0 0

0 0 0 Xi Yi Zi 0 0 0

0 0 0 0 0 0 Xi Yi Zi

...







































hom11

hom12

hom13

...

hom32

hom33

























=















ui

vi

1
...















(6.9)

with i ∈ {1..n}. With three (non collinear) or more points the homography

is uniquely estimated and the coplanar 3D points that corresponds to the

image pixel ximg =
[

u v 1
]T

is easily estimated by X3D = Hom−1ximg.

Once obtained these two 3D points for every pixel (the point in the scene

before the motion - Ai and the scene estimated point after the motion - B̂i)

it is straightforward to compute the corresponding rays since they are simply

the join of those two points.

The number of points used to estimate the homography is important to

the accuracy of this ray calibration, as well as how far they are from the

given pixel. This distance of the pixels on image is itself dependent on the

type and amplitude of motion. In the section of experiments we discuss the

accuracy of this ray calibration.

6.4 Bundle adjustment

Bundle adjustment methods are generally suitable for large scale problems

with a large number of variables and often with a high degree of non-linearity.

In general a nonlinear iterative multidimensional minimization algorithm is

applied to the state vector starting from an initial position. The function to
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be minimized, the cost function, is usually a sum of squared errors between

predicted and measured positions in the image plane. There are several

minimization strategies (see [131] for a detailed discussion) based on the

derivatives of the cost function - the Jacobian, since the problem is multidi-

mensional.

In our problem, the cost function is the sum of squared errors given by:

f(x) =

N
∑

1

{WI∆z(x)T ∆z(x) +WA∆Vr(x)T ∆Vr(x)} (6.10)

where ∆z(x) = z(x)− zmeasure and z(x) =
[

u v
]T

(computed by equation

(6.7)) and ∆Vr(x) is the difference between the unit reflected rays computed

by the projection model of section 6.2 and computed according to Snell’s Law.

WI and WA are weight values applied to the reprojection error (WI) and to

the incident ray direction error (WA). x represents the state vector whose

elements are as follows:

x =[fu fv ν u0 v0 tH1 tH2 tH3 θ1 θ2...

...θ3 As Bs Cs tT 1 tT 2 tT 3 θA θB θC ] (6.11)

Consider that Vr = −RCAM/‖RCAM‖ is the unit reflected ray com-

puted according to the model presented in section 6.2 and that V′
r is the

actual reflected ray computed according to Snell’s Law. Assume that they

are expressed in the camera coordinate frame. Their expressions are:



























Vr = − 1√
(A1+α(B1−A1))

2+(A2+α(B2−A2))
2+(A3+α(B3−A3))

2









A1 + α(B1 − A1)

A2 + α(B2 − A2)

A3 + α(B3 − A3))









V′
r = Vi − 2(Vi

TN)N

(6.12)
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where Vi is the unit incident ray and N is the normal vector to the quadric

surface at the reflection point R. For the incident ray we have:

Vi =
A−B

‖A−B‖ (6.13)

To compute the normal vector to the quadric we take into account that

the normal to the quadric is the direction vector of the tangent plane at

the reflection point RCAM. Hence, the tangent plane is given by ΠR =

QCAM

[

RCAM
T 1

]T

and since the direction vector of the plane ΠR is made

up by the first three components of it, we have N = QCAM3×4

[

RCAM
T 1

]T

,

where QCAM3×4 is the rectangular matrix made up by the first three lines

of the quadric mirror matrix QCAM.

The second element of the cost function can then be computed using the

following equation:

∆Vr(x) = V′
r −Vr (6.14)

The computation of the Jacobian is straightforward by taking the deriva-

tives of the equations of the cost function with respect to each of the un-

knowns of the state vector. The derivative for each term is computed inde-

pendently and then summed as J = JI+JA. The explicit expressions for the

Jacobian are presented in appendix for the sake of clarity. They are however

straightforward to derive.

For the error component of the cost function corresponding to the image

reprojection - WI∆z(x)T ∆z(x), its expanded expression for each point used

is given byWI

(

(u(x)− umeasure)2 + (v(x)− vmeasure)2
)

. Taking the deriva-

tives of this equation with respect to the components of the state vector x,

it yields the first component of the Jacobian, expressed as:
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JI = 2WI
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∂fu
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∂fv
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∂fv
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∂ν
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∂θC



































(6.15)

The Jacobian of the error due to the deviation from Snell’s Law JA is

also calculated by taking the derivatives of the expression of the ∆Vr with

respect to the components of the state vector, yielding:

JA = 2WA











(Vr1 − V ′
r 1)

∂Vr1−V ′

r1

∂fu
+ (Vr2 − V ′

r 2)
∂Vr2−V ′

r2

∂fu
+ (Vr3 − V ′

r 3)
∂Vr3−V ′

r3

∂fu

(Vr1 − V ′
r 1)

∂Vr1−V ′

r1

∂fv
+ (Vr2 − V ′

r 2)
∂Vr2−V ′

r2

∂fv
+ (Vr3 − V ′

r 3)
∂Vr3−V ′

r3

∂fv

...

(Vr1 − V ′
r 1)

∂Vr1−V ′

r1

∂θC
+ (Vr2 − V ′

r 2)
∂Vr2−V ′

r2

∂θC
+ (Vr3 − V ′

r 3)
∂Vr3−V ′

r3

∂θC











(6.16)

Several optimization methods exist that, using the Jacobian, iterate in

the state vector space until convergence to a minimum. The most used are

the Newton and the Levenberg-Marquardt methods. While the former is

easier to implement, the latter is more suitable when numerical instabilities

perturb the solution and also when matrix JT J is singular or near singular.

As described in the experimental section, we chose to use the Levenberg-

Marquardt method to minimize the cost function since we generally obtained

better results.

Additional information can be used either to restrict the problem by re-

ducing the number of parameters or to help the convergence by introducing

some third term in the cost function. As presented in section 5.2 the ap-

parent contour of the whole mirror can provide this additional data, since



6.4. Bundle adjustment 103

it introduces some algebraic constraints in the quadric mirror parameters.

Alternative equations, both for the cost function and for the Jacobian are

derived and presented. Another possible enhancement to the convergence is

the introduction of a regularization term in the cost function.

6.4.1 Initial Estimate

Regarding the initial estimate for the minimization method, usually some in-

formation about the camera and the mirror is provided by the manufacturer.

However, no information is in this case available for the position and orien-

tation of the camera in the world reference frame. Although the information

available can enhance the quality and precision of the first estimate, we wish

to evaluate the robustness of the algorithm without this kind of data.

A totally automatic algorithm to provide the first estimate has obvious

advantages. We will next present some possible options to compute one

initial estimate and we emphasize that this initial estimate can be enhanced

whenever additional information is available.

Initial Estimate Algorithm

Step 1 - Mirror/optical axis. The optical axis is coincident with the

mirror axis in a rotationally symmetric system. If we assume a rotationally

symmetric vision system, to estimate the optical axis we then must provide

two points on the mirror axis.

Before computing the mirror/optical axis and two points on it, consider

the point closest to all the incident lines in space, say M′
0. In a central

catadioptric system this point is the actual viewpoint. However, as our

system is noncentral, this point is not the viewpoint.

It can also be observed that the optical axis which is coincident with the

mirror axis (since we are assuming a rotationally symmetric system for the
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Figure 6.3: Algorithm for the initial estimate - Mirror/optical axis.

computation of the initial estimate) is the line that intersects all the incident

lines, that is, all incident rays pass through the optical axis.

Picking up four random lines, Hohmeyer and Teller [62] presented an

easy way to compute the line that passes through these four lines. This line

should be the mirror/optical axis. An easy adaptation to the method can

be made to compute the line that passes closer to all the incident lines (in

the least squares sense) or instead of that, one can pick some sets of random

lines (amongst all incident rays) and then compute the line that minimizes

the square distances. This line should also pass through M′
0 but, in practice,

this doesn’t happen due to approximation and noise. The closest point to

the mirror/optical axis is then computed, say M0. Figure 6.3 illustrates the

computation of the mirror/optical axis. Consider the unitary direction of

the mirror/optical axis given by vaxis.

Step 2 - Mirror type, dimension and positioning. Although the

type of the mirror is sometimes known we assume that we do not have this

information. Since in practice the difference of the type of mirror in the
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image formation is high we propose to try different mirror configurations

and at the end choose the best one in terms of output value of the cost

function. Formally, quadric mirrors are parameterized by three parameters:

As, Bs and Cs. Generally, for their canonical representation, one may say

that for a paraboloid Bs is the only parameter different from zero (positive

or negative), for a sphere As = 1 and Cs > 0, for a general ellipsoid Bs = 0

and for a hyperboloid As < 0 and Cs < 0.

For simplicity we propose to consider Bs = 0 and iterate through some

reasonable intervals for As and Cs, either considering the mirror a hyper-

boloid or a sphere. Notice that Cs is the square of the radius for a sphere

and it is also the square radius of the circular section for a hyperboloid when

the clipping plane is perpendicular to the mirror/optical axis). Once deter-

mined these intervals all subsequent steps of this algorithm are computed

once for each (As, Cs) pair.

As for the position of the mirror center along the mirror/optical axis,

for hyperboloids we consider the projection as being central and then all

incident rays pass through the focus of the mirror. We consider this point

to be the previously computed M0. The center of the mirror is computed

by adding the focal distance (focal =
√

Cs/As −Cs) to the focus M0 in the

vaxis direction: Chyp = M0 +
√

Cs/As − Csvaxis. Figure 6.4 illustrates this

construction.

For spherical mirror, on the other hand, the parameters As = 1 but there

is no focal point to be placed in M0. We propose to add an additional

parameters, say d, to place the center of the sphere so that Csph = M0 +

dvaxis. The scalar d must be smaller than the radius of the mirror (in

absolute value) and thus can be chosen in the interval d ∈
[

−
√
Cs,
√
Cs

]

.The

iteration of the subsequent steps of the algorithm are performed to each pair

of (d,Cs). Figure 6.5 illustrates this construction.

At the end of this step the quadric mirror in canonical form is known -



106 6. Method 2: Estimating Parameters ... using Bundle Adjustment

m
ir

ro
r 

/ o
p

ti
ca

l a
xi

s

incident rays

M0

Chyp

W

focus

Figure 6.4: Algorithm for the initial estimate - Center of the hyperbolic

mirror.

Figure 6.5: Algorithm for the initial estimate - Center of the spherical mirror.
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Q, as well as the center of the mirror in world coordinates.

Step 3 - Quadric mirror in world coordinates. After having picked

up two values for As and Cs for the hyperbolic case or for d and Cs for the

spherical one, we can now compute the transformation between the quadric

and world reference frame, and compute the quadric matrix in world frame

too.

For the hyperbolic case, the vaxis direction should be transformed to

be coincident with the z-axis so we compute two angles (θX and θY ) and

perform a compound rotation around X and Y axis respectively, say Rq.

The translation vector tq can be computed by tq = −RqChyp and the

transformation between the world reference frame and the quadric mirror

one is then given by:

Hq =

[

Rq tq

0T 1

]

(6.17)

where the quadric mirror in its canonical form is given by:

Qhyp =















1 0 0 0

0 1 0 0

0 0 As 0

0 0 0 Cs















(6.18)

and consequently the quadric mirror is expressed in world coordinates as

Qw = Hq
TQhypHq.

For the spherical case, the transformation matrix between the mirror and

world reference frames has only translation components, since it is meaning-

less to rotate a sphere. The translation vector is the vector between the

center of the sphere and the world origin, so we have tq = −Csph. The

transformation is then:
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Hq =

[

I3 Csph

0T 1

]

(6.19)

where I3 is the 3 × 3 identity matrix and where the quadric mirror in its

canonical form is given by:

Qsph =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 Cs















(6.20)

and then the spherical mirror in the world coordinate system is also expressed

as Qw = Hq
TQsphHq.

Step 4 - Reflection points. The computation of the reflection point

on the mirror surface is easily computed by intersecting the incident rays

with the quadric Qw. It can be achieved by computing the values of the

parameter α that solve expression:

[

Aw
T + α (Bw −Aw)T 1

]

Qw

[

Aw
T + α (Bw −Aw)T 1

]T

= 0

Generally two solutions exist and as discussed in section 6.2 the appro-

priate is the smallest one in absolute value.

This step provides a set of points on the mirror surface expressed in world

coordinates.

Step 5 - Perspective camera calibration. The position and ori-

entation of the camera in relation to the world reference frame (extrinsic

parameters) and its intrinsic parameters can then be estimated by using the

known world coordinates of the reflection points on the mirror surface. There

are several methods to perform this calibration step. We propose to use the
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linear approach described in [38] (p. 45) and the possible refinements also

described.

This perspective camera calibration gives us all the camera-world pose

parameters (tH1, tH2, tH3, θ1, θ2 and θ3) and also the intrinsic parameters

of the camera (fu, fv, ν, u0 and v0). Initial values for matrices H and K are

at this point estimated.

Step 6 - Camera-mirror pose. The position and orientation of the

camera in relation to the mirror (matrix T) can then be estimated from the

two poses Hq and H and the quadric in world coordinates, since:

Qcam = T−TQT−1

= H−TQwH−1 = H−THq
TQHqH

−1
(6.21)

and therefore T = HHq
−1. The quadric mirror in camera coordinates can

then be computed by expression (6.21).

Step 7 - Computation of the cost function. Since a complete state

vector is at this point computed, it is used to compute the cost function

value (reprojection error and Snell’s Law deviation). This value is saved.

Step 8 - Iteration. Iterates steps 3 to 7 for all pairs of parameters

(As, Cs) for the hyperbolic mirror hypothesis and (d,Cs) for the spherical

one. The pairs are picked up from the intervals defined in step 2.

Step 9 - Selection. Select the initial estimate as the one amongst all

state vectors tried with the smallest cost.

End of algorithm.
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All the parameters of the state vector are now computed and an initial es-

timate exists. This automatic algorithm to provide an initial set of estimates

for the bundle adjustment method can be improved if additional information

about the system is available.

6.4.2 Apparent Contour

As stated by section 5.2, from the apparent contour of the quadric mirror

useful data for the algorithm can be extracted. It allows the reduction of the

uncertainty in the estimation of the parameters of the quadric.

The equations derived enable us to compare the real apparent contour

with the analytic contour resulting for the state vector in use. Alternatively

we can compare the back-projected and projection cones of equations (5.3)

and (5.5) which yields more compact equations since the matrix of the in-

trinsic parameters K does not need to be inverted. These equations can be

used in the model by introducing a third term in the cost function. The

extended explicit equations are presented in the appendix B (section 6.6).

6.5 Experiments

In this section we present the results from the experiments performed to

test the robustness and accuracy of the framework presented throughout the

chapter. Results with simulated data are first presented. They focus on the

robustness of the convergence and on the accuracy of the initial estimates of

the state vector. Finally we present some results from experiments with real

images using two noncentral catadioptric systems.

6.5.1 Experiments with Simulated Data

In the experiments with simulated data we used a catadioptric systems made

up of a pinhole camera with a hyperbolic mirror. Tests with spherical and
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parabolic mirrors were also performed but since the results are similar to

those obtained with the hyperbolic mirror we omit their results.

We present tests for the two steps of the method: the ray calibration and

the state vector estimation. Finally we also present some results obtained

by using the method as a whole.

For the first step of the method, that is, the ray calibration, we generated

a second image of two planar grid patches and computed the incident rays as

explained in section 6.3. For the computation of the homography we used the

four closest points in the neighborhood of the image pixel considered (n = 4).

To evaluate the accuracy of this method to estimate lines corresponding to

image pixels we computed the angle between the estimated line and the

ground truth one. As the accuracy is affected mainly by the density of grid

pixels, expressed by the average image distance to the considered pixel, figure

6.6 plots the RMS value of the angle as function of the average distance of

the 4 used points to compute homography.

As can be observed from figure 6.6, as the density of grid pixels decreases,

the error in estimating the incident rays that correspond to image pixels

increases inversely. This shows that the accuracy of the ray calibration is

affected by the assumption of continuous projection of a planar surface. This

fact also suggests that when calibrating the incident ray space in this way

one should provide high density of pixels in image such that the homography

calculated is as close as possible to the actual transformation.

For the calibration of the state vector, the algorithm second step, we

evaluated its accuracy by adding Gaussian white noise to the data in two

different sets of tests. In the first one we added noise to the ground truth

values of the parameters x. This test evaluates the robustness of the conver-

gence near the optimal point. The energy of the error added to the ground

truth values of the state vector was increased from a low error energy (stan-

dard deviation of 0.125% of the ground truth value) and was successively
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Figure 6.6: Angle error (RMS value in degrees) between the computed and

actual incident rays in 3D space. The angle error is computed for an in-

creasing value of the RMS distance between the 4 image pixels used in the

computation of the homography.

multiplied by a factor of 2 until a high error energy (standard deviation of

4% of the ground truth value). Figures 6.7 and 6.8 shows the relative error

for each of the parameters of the state vector. The test was repeated 100

times and RMS values are presented. For the parameters whose ground truth

value is zero we omitted their estimated values since no relative error can be

computed. These parameters are ν, θ2 and Bs. We observed however, that

their estimated values were around zero and that their absolute value drifted

from zero as the error energy increases, as expected.
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Figure 6.7: Results with simulated data. Relative error, or angular error

for Euler angles, of the estimated state vector elements, for increasing noise

energy added to the initial estimate. The results are plotted in percentage

- % and degrees for angles. The parameters whose ground truth value is

zero are omitted since no relative error can be computed - ν, θ2 and Bs.

The standard deviation of the noise added is expressed in percentage of the

ground truth value.
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Figure 6.8: Cont. - Results with simulated data. Relative error, or angular

error for Euler angles, of the estimated state vector elements, for increasing

noise energy added to the initial estimate. The results are plotted in percent-

age - % and degrees for angles. The parameters whose ground truth value

is zero are omitted since no relative error can be computed - ν, θ2 and Bs.

The standard deviation of the noise added is expressed in percentage of the

ground truth value.

The aim of this test is the study of the behavior of the algorithm near

the global minimum of the state vector. As can be observed from the figure,

the convergence to the ground truth value (or at least a value with very low

cost) is generally obtained. To evaluate also the importance of the errors of

the state vector parameters in the image itself, we plotted in figure 6.9 the

RMS value of the reprojection error and Snell’s Law deviation of incident

lines. To compute these error measures we did not use the points over which

we iterated the bundle adjustment but rather used the remaining point of

the calibration patches. As expected, their values increase with noise energy,

however, very slowly.
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Figure 6.9: Results with simulated data. Image error and angle deviation

from Snell’s Law obtained with the estimated state vectors. These error

measures were computed in points not used in the bundle adjustment process.

The standard deviation of the noise added is expressed in percentage of the

ground truth value.

The second test was performed by starting to iterate the algorithm from

a totally random position. The values were picked up randomly from a wide

interval. The test interval is a range from−200% to 200% of the ground truth

value (eg. for a parameter whose value is 10 we consider a range from -10 to

30). In this case, as expected, often the starting estimate is a non physical

configuration (such that not all or even none of the points are projected into

the image). We rejected these cases and picked up another starting estimate.

Also, often the random initial values do not converge to the ground truth

state vector, getting trapped in a local minimum, corresponding to a high

value of the cost function. These cases were also rejected. We concluded
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that when totally random state vector estimates are used, the convergence

is difficult and slow. However, if the test is repeated a high number of

times the chance of obtaining a cost function with low value and therefore

convergence is reasonable (on average one has to try about 200 random state

vectors to achieve convergence). No results are shown in this case, since

when the convergence is achieved, the relative errors of the parameters are

small, regardless of the number of trials required to achieve it.

Table 6.1: Standard deviations used to add noise to the image coordinates

(in pixels) and to the state vector parameters (in percentage of the ground

truth value) in the experiments of the whole method with simulated data.

Image coordinates [pixel] 0.0625 0.125 0.25 0.5 1.0

State vector par. % 0.625 1.25 2.5 5 10

As for the experiments with the method as a whole, including the evalua-

tion of the accuracy obtained by the initial estimate method, the two steps of

the algorithm were tested in conjunction. Pixels of corresponding calibration

patches were picked up from two images taken by the vision system in two

different positions affected by a known motion transformation. The image

coordinates of the pixel at both images were affected by a noise of increasing

standard deviation and the incident lines in space were then estimated. The

error was a zero mean Gaussian noise with minimum standard deviation of

0.0625 pixels and maximum of 1 pixel (see table 6.1). These incident rays

were used to calibrate the state vector using the second step of the algorithm,

the bundle adjustment. Two different evaluations were performed. In the

first one the state vector starts from a random position in the neighborhood

of their ground truth values. The increasing zero mean Gaussian noise energy

applied to the state vector parameters has a minimum standard deviation of
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0.625% and maximum of 10% (see table 6.1).

For the second evaluation, we used the same incident rays which were

perturbed with noise. The initial estimates were then computed using our

presented algorithm. The second step was thus performed by starting the

iterations from these computed initial estimates.

The results for the first evaluation are presented in the set of figures 6.10

and 6.11. The standard deviation of the zero mean Gaussian noise applied to

the pixel coordinates and to the state vector parameters are both expressed

in percentage of the ground truth value and increased simultaneously. The

used values are presented in table 6.1.

The results for the second evaluation, that is, by estimating the initial

state vector using our algorithm, are presented in the set of figures 6.12

and 6.13. The standard deviation of the zero mean Gaussian noise added

to the pixel coordinates is the same applied in the previous evaluation and

presented in the first row of table 6.1. They are both expressed in percentage

of the ground truth value.
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Figure 6.10: Results with simulated data. Relative error, or angular error

for Euler angles, of the estimated state vector elements, for increasing noise

energy added to the initial estimate and to the image pixel coordinates. The

method is tested as a whole. The results are plotted in percentage - % for

non angular parameters and degrees for angular ones. The parameters whose

ground truth value is zero are omitted since no relative error can be computed

- ν, θ2 and Bs. The standard deviation of the noise added is expressed in

percentage of the ground truth value.
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Figure 6.11: Cont. - Results with simulated data. Relative error, or

angular error for Euler angles, of the estimated state vector elements, for

increasing noise energy added to the initial estimate and to the image pixel

coordinates. The method is tested as a whole. The results are plotted in

percentage - % for non angular parameters and degrees for angular ones. The

parameters whose ground truth value is zero are omitted since no relative

error can be computed - ν, θ2 and Bs. The standard deviation of the noise

added is expressed in percentage of the ground truth value.
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Figure 6.12: Results with simulated data. Relative error, or angular error

for Euler angles, of the estimated state vector elements, for increasing noise

energy added to the image pixel coordinates. The initial estimate is obtained

by using our automatic algorithm. The method is tested as a whole. The

results are plotted in percentage - % for non angular parameters and degrees

for angular ones. The parameters whose ground truth value is zero are

omitted since no relative error can be computed - ν, θ2 and Bs. The standard

deviation of the noise added is expressed in percentage of the ground truth

value.
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Figure 6.13: Cont. - Results with simulated data. Relative error, or

angular error for Euler angles, of the estimated state vector elements, for

increasing noise energy added to the image pixel coordinates. The initial es-

timate is obtained by using our automatic algorithm. The method is tested

as a whole. The results are plotted in percentage - % for non angular pa-

rameters and degrees for angular ones. The parameters whose ground truth

value is zero are omitted since no relative error can be computed - ν, θ2 and

Bs. The standard deviation of the noise added is expressed in percentage of

the ground truth value.

In figures 6.10 to 6.13, for the parameters whose ground truth value is

zero, we omitted their estimated values since no relative error can be com-

puted. These parameters are ν, θ2 and Bs. We observed however, as ex-

plained above, that their estimated values were around zero and that their

absolute value drifted from zero as the error energy increases, as expected.

We also present in figure 6.14 the RMS value of the reprojection error and

angle deviation of incident lines, correspondent to the tests using our auto-

matic algorithm for the initial estimate that are presented in figures 6.12 and

6.13. To compute these error measures we did not use the points over which

we iterated the bundle adjustment but rather used the remaining point of
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the calibration patches.

It can be concluded from the observation of figures 6.10 to 6.14 that the

method as a whole is sensitive to noise both in the image pixels and in the

initial estimate parameters. Accurate estimation of the vision system param-

eters (and therefore small reprojection error and deviation from Snell’s Law)

is generally obtained for small error energies (standard deviation smaller

than 1% of the ground truth value). It was also observed from figure 6.10 to

6.13 that the error increased drastically when the first calibration step was

introduced, the ray calibration. We conclude that the first step calibration

is critical to the final estimation results and a strong effort must be put on

it.
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Figure 6.14: Results with simulated data. Image error and angle deviation

from Snell’s Law obtained with the method as a whole, introducing error in

the image pixel coordinates and in the incident rays, correspondent to the

tests using our automatic algorithm for the initial estimate that are presented

in the set of figures 6.12 and 6.13. These error measures where computed in

points not used in the bundle adjustment process. The standard deviation

of the noise added is expressed in percentage of the ground truth value.
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6.5.2 Real Image Experiments

In experiments with real images, we used a commercial high resolution cam-

era CANON EOS 350D (the image is 3456x2304 pixels) with two different

mirrors: a spherical and a hyperbolic one. The camera was positioned to

be non aligned with the mirror axis in the hyperbolic case and so that its

optical axis does not pass through the center of the spherical mirror. These

vision system configurations are consequently noncentral.

In order to have ground truth values to compare with, the system was

calibrated by applying firstly the Camera Calibration Toolbox [18] to the

pinhole camera. The calibration of the mirror and the poses of the camera

in relation to the mirror and world reference frames were achieved using our

algorithm presented in chapter 5 and in [53]. Some heuristics were also used

to find the best solution to the problem. The calibration parameters were

also estimated using three images taken with the system in three different po-

sitions affected by known motion transformations. Besides the reprojection

error, the error measure used in the estimation process was the distance from

the 3D world point to the back projected incident ray. In this pre-calibration

we achieved a mean distance of 0.6mm for the hyperbolic mirror and 2.0mm

for the spherical one, in a range of approximately 400mm. Since both the

reprojection error and the distance from the 3D points to the back-projected

incident rays is small, we consider the pre-calibration results as ground truth

to compare with in our experiments.

Figure 6.15 shows two sample images taken by our experimental setup in

its hyperbolic and spherical configurations.

Points from the calibration pattern were acquired. The first step ray cal-

ibration was computed using four points to estimate the plane homography

and then to estimate the incident lines in space. The first estimate algo-

rithm was then run and the second step calibration algorithm iterated until
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Table 6.2: Final calibration and intermediate initial estimates relative er-

rors in percentage for the hyperbolic configuration. Absolute values are

presented for the zero-valued truth parameters.

True value Initial estimate Error (%) Final calibration Error (%)

fu 8086.75 7679.73 5.03 7640.57 5.52

fv 8058.73 5965.97 25.97 7538.68 6.45

ν 0.00 0.00 - -0.00 -

u0 1672.38 2172.30 29.89 1671.67 0.04

v0 1146.18 1200.27 4.72 1147.95 0.15

tH1 -82.77 -106.02 28.09 -65.55 20.80

tH2 126.94 143.66 13.18 145.18 14.37

tH3 173.20 84.64 51.13 172.38 0.47

θ1 -4.15 -4.60 10.70 -4.32 3.99

θ2 0.04 0.07 64.05 0.05 5.83

θ3 -6.27 -5.72 8.78 -6.73 7.42

As -0.76 -0.95 23.00 -0.92 20.79

Bs 0.00 0.00 - 0.00 -

Cs -559.96 -590.00 5.64 -537.25 4.06

tT 1 -0.57 -0.45 20.71 -0.51 9.97

tT 2 4.79 4.44 7.30 4.74 1.02

tT 3 292.76 371.34 26.84 270.70 7.54

θA 0.19 0.23 20.18 0.18 3.03

θB 0.14 0.15 4.28 0.15 2.98

θC -0.41 -0.43 5.99 -0.40 1.37
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Table 6.3: Final calibration and intermediate initial estimates relative errors

in percentage for the spherical configuration. Absolute values are presented

for the zero-valued truth parameters.

True value Initial estimate Error (%) Final calibration Error (%)

fu 7702.53 5724.58 25.68 7789.50 1.13

fv 7601.90 5649.66 25.68 7687.46 1.13

ν 0.00 -0.42 - 0.01 -

u0 1773.37 1685.33 4.96 1771.43 0.11

v0 1316.00 1217.59 7.48 1319.51 0.27

tH1 -61.06 4.89 108.01 41.05 167.23

tH2 174.73 157.05 10.12 174.31 0.24

tH3 -366.43 -382.83 4.48 -364.35 0.57

θ1 2.42 2.15 11.45 2.41 0.72

θ2 0.11 0.07 39.07 0.08 32.60

θ3 0.14 -0.25 282.82 -0.29 309.68

As 1.00 1.30 29.87 0.99 1.36

Bs 0.00 -0.00 - -0.00 -

Cs 625.00 859.00 37.45 620.97 0.64

tT 1 14.59 13.29 8.89 14.47 0.81

tT 2 10.48 7.94 24.25 10.57 0.92

tT 3 -285.05 -248.69 12.75 -287.32 0.80

θA 0.00 0.05 - -0.00 -

θB 0.00 0.00 - 0.00 -

θC 0.00 0.01 - 0.62 -
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convergence. Tables 6.5.2 and 6.3 show the results and the relative error for

each state vector component, for the hyperbolic and spherical configurations

respectively.

From the results one can conclude that the first estimate permitted the

algorithm to converge to an acceptable solution.



6.5. Experiments 127

(a) Spherical mirror

(b) Hyperbolic mirror

Figure 6.15: Real images taken with our experimental setup.
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6.6 Summary and Conclusions

This chapter describes a two-steps method to estimate the parameters of

general catadioptric vision systems.

The first step is the ray calibration in such a way that it provides cor-

respondences between pixels and incident lines in space, in a general and

unconstrained world reference frame. The second step is the estimation of

the intrinsic and extrinsic parameters of the camera (considered to be a pin-

hole) in relation to the mirror surface and the world reference frame. The

mirror shape parameters are also calibrated.

In order to simplify the projection and to provide the method with explicit

expressions of the projection and its Jacobian, a parameterized projection

model relaxing Snell’s Law is derived. The reflection point is considered to

be the intersection between the incident line in space and the quadric mirror

surface. The intersection point is projected into the image according to the

camera model. The parameterized projection model relates the coordinates

of the point in the image with the incident rays.

A bundle adjustment method is applied to this model and to the data

available in order to iterate the values of the state vector made up by the

system parameters - pinhole intrinsic parameters, position and orientation of

the camera in the world coordinate system and the mirror shape parameters.

The computation of the initial estimate and of the Jacobian, both required

by the method, are also addressed.

In relation to the gain coefficients WC , WI and WA, we noticed that

they always influence highly the convergence since they weight the compo-

nents of the cost function: reprojection error (WI), Snell’s Law deviation

(WC) and apparent contour deviation (WA). We noticed in the course of the

experiments that the coefficients of the reprojection error and Snell’s Law

deviation have similar influence and then must be tuned to have comparable
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magnitudes. On the other hand, the apparent contour, if used, has a high

influence in the cost function and dramatically enhance the accuracy of the

estimation. The value of its coefficient must then be tuned in order to guar-

antee that its term is of the same magnitude order than the other two terms.

Notice, however, that this tuning is highly variable and always depends from

images to images.

General results of the experiments with simulated data and real images

with different mirror configurations showed that the method is accurate and

in general converges to the global minimum or at least to a local minimum

with very low value of the cost function. The method is, however, very

sensitive to noise and experiments suggest that a great effort must be put in

the calibration of the first step, that is, the ray calibration is critical to the

accuracy of the estimated parameters.
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Appendix A: Jacobian of Projection Model

The explicit extended expression for the Jacobian of the cost function, sum

of equations (6.15) and (6.16), are here derived and presented.

The first component of the Jacobian is JI, given by:

JI = WI


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


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

2(u− umeasure) ∂u
∂fu

+ 2(v − vmeasure) ∂v
∂fu

2(u− umeasure) ∂u
∂fv

+ 2(v − vmeasure) ∂v
∂fv

2(u− umeasure)∂u
∂ν

+ 2(v − vmeasure)∂v
∂ν

2(u− umeasure) ∂u
∂u0

+ 2(v − vmeasure) ∂v
∂u0

2(u− umeasure) ∂u
∂v0
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∂v0

2(u− umeasure) ∂u
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∂θC
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∂θC
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

















(6.22)

Taking derivatives of the equations for u and v (the image coordinates of

the points), the equations for the Jacobian are a function of the derivatives

of RCAM with respect to each of the components of the state vector x.

However, before computing the derivatives in relation to the state vector

parameters, we first provide closed-form equations to the projection model

(the equations are closed-form up to a root selection).

The image coordinates are given by :







u =
fuRCAM1

+νRCAM2
+u0RCAM3

RCAM3

v =
fvRCAM2

+v0RCAM3
RCAM3

(6.23)

and the explicit expressions of the reflection point RCAM are written as:

[

RCAM

1

]

=

[

A + α(B−A)

1

]

(6.24)

with:
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
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


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
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
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



RCAM 1 = h11 (Aw1 + α(Bw1 −Aw1)) + h12 (Aw2 + α(Bw2 −Aw2)) +

+h13 (Aw3 + α(Bw3 −Aw3)) + tH1

RCAM 2 = h21 (Aw1 + α(Bw1 −Aw1)) + h22 (Aw2 + α(Bw2 −Aw2)) +

+h23 (Aw3 + α(Bw3 −Aw3)) + tH2

RCAM 3 = h31 (Aw1 + α(Bw1 −Aw1)) + h32 (Aw2 + α(Bw2 −Aw2)) +

+h33 (Aw3 + α(Bw3 −Aw3)) + tH3

where hij are the rotation elements of the camera-world pose RH. They are

given by:

RH = Rfrozen
H Rotθ3Rotθ2Rotθ1 (6.25)

where Rfrozen
H is the frozen rotation matrix and θi, i ∈ {1, 2, 3}, are the

update rotation angles, updating the overall rotation every iteration. The

Jacobians are computed for the update angles since for the beginning of every

iteration the angles are considered constant and the update angles are zero.

The equation of the rotation matrix in the camera-world pose H - RH is

then given by:

RH = Rfrozen
H









Cθ2Cθ3 Sθ1Sθ2Cθ3 −Cθ1Sθ3 Cθ1Sθ2Cθ3 + Sθ1Sθ3

Cθ2Sθ3 Sθ1Sθ2Sθ3 + Cθ1Cθ3 Cθ1Sθ2Sθ3 − Sθ1Cθ3
−Sθ2 Sθ1Cθ2 Cθ1Cθ2









(6.26)

where Cθi represents cos(θi) and Sθi represents sin(θi). If we denote by hf
ij

the element ij of the frozen rotation matrix, then the expanded expression

for the rotation elements are:
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h11 = hf
11Cθ2Cθ3 + hf

12Cθ2Sθ3 − h
f
13Sθ2

h12 = hf
11 (Sθ1Sθ2Cθ3 − Cθ1Sθ3) + hf

12 (Sθ1Sθ2Sθ3 + Cθ1Cθ3) +

+hf
13Sθ1Cθ2

h13 = hf
11 (Cθ1Sθ2Cθ3 + Sθ1Sθ3) + hf

12 (Cθ1Sθ2Sθ3 − Sθ1Cθ3) +

+hf
13Cθ1Cθ2

h21 = hf
21Cθ2Cθ3 + hf

22Cθ2Sθ3 − h
f
23Sθ2

h22 = hf
21 (Sθ1Sθ2Cθ3 − Cθ1Sθ3) + hf

22 (Sθ1Sθ2Sθ3 + Cθ1Cθ3) +

+hf
23Sθ1Cθ2 (6.27)

h23 = hf
21 (Cθ1Sθ2Cθ3 + Sθ1Sθ3) + hf

22 (Cθ1Sθ2Sθ3 − Sθ1Cθ3) +

+hf
23Cθ1Cθ2

h31 = hf
31Cθ2Cθ3 + hf

32Cθ2Sθ3 − h
f
33Sθ2

h32 = hf
31 (Sθ1Sθ2Cθ3 − Cθ1Sθ3) + hf

32 (Sθ1Sθ2Sθ3 + Cθ1Cθ3) +

+hf
33Sθ1Cθ2

h33 = hf
31 (Cθ1Sθ2Cθ3 + Sθ1Sθ3) + hf

32 (Cθ1Sθ2Sθ3 − Sθ1Cθ3) +

+hf
33Cθ1Cθ2

The expression for the rotation matrix of the camera-mirror pose (given

by RT = {tij}) is written similarly, on the angles θA, θB and θC and as

function of the frozen rotation elements tfij.

As for the equations of the quadric mirror parameters in camera coor-

dinates it yields QCAM = T−TQT−1. Expanding this equations we obtain

the following expressions for the elements of the quadric mirror in camera

coordinates:
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qCAM11 = t211 + t212 + t213As

qCAM12 = t11t21 + t12t22 + t13t23As

qCAM13 = t11t31 + t12t32 + t13t33As

qCAM14 = −t211tT 1 − t11t21tT 2 − t11t31tT 3 − t212tT 1 − t12t22tT 2 −

−t12t32tT 3 − t213tT 1As − t13t23tT 2As − t13t33tT 3As + t13Bs

qCAM22 = t221 + t222 + t223As

qCAM23 = t21t31 + t22t32 + t23t33As

qCAM24 = −t11t21tT 1 − t221tT 2 − t21t31tT 3 − t12t22tT 1 − t222tT 2 −

−t22t32tT 3 − t13t23tT 1As − t223tT 2As − t23t33tT 3As + t23Bs

qCAM33 = t231 + t232 + t233As

qCAM34 = −t11t31tT 1 − t21t31tT 2 − t231tT 3 − t12t32tT 1 − t22t32tT 2 −

−t232tT 3 − t13t33tT 1As − t23t33tT 2As − t233tT 3As + t33Bs

qCAM44 = (t11tT 1 + t21tT 2 + t31tT 3)
2 + (t12tT 1 + t22tT 2 + t32tT 3)

2 +

+ (t13tT 1 + t23tT 2 + t33tT 3)
2As −

−2 (t13tT 1 + t23tT 2 + t33tT 3)Bs − Cs

(6.28)

where only the elements of the upper triangular matrix are presented since

the quadric matrix is symmetric.

In order to close the expressions of the projection model, one has to

express α as function of the state vector parameters. Its explicit expression

is the expansion and solution of equation (6.5). It yields:
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α =
−C2 ±

√

C2
2 − 4C1C3

2C1
(6.29)

C1 = qCAM11D
2
1 + 2qCAM 12D1D2 + 2qCAM13D1D3 + qCAM22D

2
2 +

+2qCAM23D2D3 + qCAM33D
2
3

C2 = 2qCAM 11A1D1 + 2qCAM 12 (A1D2 +A2D1) +

+2qCAM13 (A1D3 +A3D1) + 2qCAM 14D1 + 2qCAM 22A2D2 +

+2qCAM23 (A2D3 +A3D2) + 2qCAM 24D2 + 2qCAM 33A3D3 +

+2qCAM34D3

C3 = qCAM11A
2
1 + 2qCAM 12A1A2 + 2qCAM 13A1A3 + 2qCAM 14A1 +

+qCAM22A
2
2 + 2qCAM 23A2A3 + 2qCAM 24A2 + qCAM33A

2
3 +

+2qCAM34A3 + qCAM44

where Ai is the i-th element of A, Bi the i-th element of B and Di = Bi−Ai.

Since α is the solution of a second degree polynomial with two distinct

real roots and since there is no immediate way to choose the appropriate one

(for which we discuss a strategy in section 6.2), the expressions of the image

coordinates (u, v) are not actually closed. However, as discussed in section

6.2, if some simple previous conditions about the relative positions of points

Aw and Bw are met one knows that the appropriate root is the one with

the smallest absolute value, hence completing the expressions of (u, v) and

hence of the cost function.

Concerning the derivatives of the image pixel coordinates, we have:

∂u
∂fu

=
RCAM1

RCAM3

∂u
∂fv

= 0

∂u
∂ν

=
RCAM2

RCAM3
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∂u
∂u0

= 1

∂u
∂v0

= 0

∂u
∂xk

=

(

fu
∂RCAM1

∂xk
+ ν

∂RCAM2
∂xk

)

RCAM3 − (fuRCAM1 + νRCAM2)
∂RCAM3

∂xk

RCAM3
2 ,

where xk ∈ {tH1, tH2, tH3, θ1, θ2, θ3, As, ..., θB , θC}
∂v
∂fu

= 0

∂v
∂fv

=
RCAM2

RCAM3

∂v
∂ν

= 0

∂v
∂u0

= 0

∂v
∂v0

= 1

∂v
∂xk

=
fv

∂RCAM2
∂xk

RCAM3 − fvRCAM2

∂RCAM3
∂xk

RCAM3
2 ,

where xk ∈ {tH1, tH2, tH3, θ1, θ2, θ3, As, ..., θB , θC}

Since we apply the chain rule to compute the full derivatives, we start by

the expression of the rotation elements hij and tij derivatives, then by the

expressions of the derivatives of the quadric mirror elements qCAM ij, followed

by the expressions of the scalar α derivatives and finally by the derivatives

of the reflection point coordinates RCAM i.

Since the rotation elements hij and tij have similar form, depending on

the triplets (θ1,θ2,θ3) and (θA,θB ,θC), respectively, we opt to present only the

expressions of the derivatives of hij . To obtain the explicit derivatives of tij

one just has to interchange the triplets of Euler angles in the corresponding

expressions. We hence obtain:
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∂h11
∂θ1

= 0

∂h11
∂θ2

= −hf
11Sθ2Cθ3 − h

f
12Sθ2Sθ3 − h

f
13Cθ2 (6.30)

∂h11
∂θ3

= −hf
11Cθ2Sθ3 + hf

12Cθ2Cθ3

∂h12
∂θ1

= hf
11 (Cθ1Sθ2Cθ3 + Sθ1Sθ3) + hf

12 (Cθ1Sθ2Sθ3 − Sθ1Cθ3) +

+hf
13Cθ1Cθ2

∂h12
∂θ2

= hf
11Sθ1Cθ2Cθ3 + hf

12Sθ1Cθ2Sθ3 − h
f
13Sθ1Sθ2 (6.31)

∂h12
∂θ3

= −hf
11 (Sθ1Sθ2Sθ3 + Cθ1Cθ3) + hf

12 (Sθ1Sθ2Cθ3 − Cθ1Sθ3)

∂h13
∂θ1

= hf
11 (Cθ1Sθ3− Sθ1Sθ2Cθ3)− hf

12 (Sθ1Sθ2Sθ3 + Cθ1Cθ3)−

−hf
13Sθ1Cθ2

∂h13
∂θ2

= hf
11Cθ1Cθ2Cθ3 + hf

12Cθ1Cθ2Sθ3 − h
f
13Cθ1Sθ2 (6.32)

∂h13
∂θ3

= hf
11 (Sθ1Cθ3− Cθ1Sθ2Sθ3) + hf

12 (Cθ1Sθ2Cθ3 + Sθ1Sθ3)

∂h21
∂θ1

= 0

∂h21
∂θ2

= −hf
21Sθ2Cθ3 − h

f
22Sθ2Sθ3 − h

f
23Cθ2 (6.33)

∂h21
∂θ3

= −hf
21Cθ2Sθ3 + hf

22Cθ2Cθ3

∂h22
∂θ1

= hf
21 (Cθ1Sθ2Cθ3 + Sθ1Sθ3) + hf

22 (Cθ1Sθ2Sθ3 − Sθ1Cθ3) +

+hf
23Cθ1Cθ2

∂h22
∂θ2

= hf
21Sθ1Cθ2Cθ3 + hf

22Sθ1Cθ2Sθ3 − h
f
23Sθ1Sθ2 (6.34)

∂h22
∂θ3

= −hf
21 (Sθ1Sθ2Sθ3 + Cθ1Cθ3) + hf

22 (Sθ1Sθ2Cθ3 − Cθ1Sθ3)
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∂h23
∂θ1

= hf
21 (Cθ1Sθ3− Sθ1Sθ2Cθ3)− hf

22 (Sθ1Sθ2Sθ3 + Cθ1Cθ3)−

−hf
23Sθ1Cθ2

∂h23
∂θ2

= hf
21Cθ1Cθ2Cθ3 + hf

22Cθ1Cθ2Sθ3 − h
f
23Cθ1Sθ2 (6.35)

∂h23
∂θ3

= hf
21 (Sθ1Cθ3− Cθ1Sθ2Sθ3) + hf

22 (Cθ1Sθ2Cθ3 + Sθ1Sθ3)

∂h31
∂θ1

= 0

∂h31
∂θ2

= −hf
31Sθ2Cθ3 − h

f
32Sθ2Sθ3 − h

f
33Cθ2 (6.36)

∂h31
∂θ3

= −hf
31Cθ2Sθ3 + hf

32Cθ2Cθ3

∂h32
∂θ1

= hf
31 (Cθ1Sθ2Cθ3 + Sθ1Sθ3) + hf

32 (Cθ1Sθ2Sθ3 − Sθ1Cθ3) +

+hf
33Cθ1Cθ2

∂h32
∂θ2

= hf
31Sθ1Cθ2Cθ3 + hf

32Sθ1Cθ2Sθ3 − h
f
33Sθ1Sθ2 (6.37)

∂h32
∂θ3

= −hf
31 (Sθ1Sθ2Sθ3 + Cθ1Cθ3) + hf

32 (Sθ1Sθ2Cθ3 − Cθ1Sθ3)

∂h33
∂θ1

= hf
31 (Cθ1Sθ3− Sθ1Sθ2Cθ3)− hf

32 (Sθ1Sθ2Sθ3 + Cθ1Cθ3)−

−hf
33Sθ1Cθ2

∂h33
∂θ2

= hf
31Cθ1Cθ2Cθ3 + hf

32Cθ1Cθ2Sθ3 − h
f
33Cθ1Sθ2 (6.38)

∂h33
∂θ3

= hf
31 (Sθ1Cθ3− Cθ1Sθ2Sθ3) + hf

32 (Cθ1Sθ2Cθ3 + Sθ1Sθ3)

Since the update rotation angles are around zero and in the beginning of

every iteration their values are zero, we substitute it directly in the equations

of the derivatives, providing very simple derivative equations as every Sθi is

0 and Cθi is 1. The final simplified expressions are given by:
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∂h11

∂θ1
= 0

∂h11

∂θ2
= −hf

13

∂h11

∂θ3
= hf

12

∂h12

∂θ1
= hf

13

∂h12

∂θ2
= 0

∂h12

∂θ3
= −hf

11

∂h13

∂θ1
= −hf

12

∂h13

∂θ2
= hf

11

∂h13

∂θ3
= 0

∂h21

∂θ1
= 0

∂h21

∂θ2
= −hf

23

∂h21

∂θ3
= hf

22

∂h22

∂θ1
= hf

23

∂h22

∂θ2
= 0

∂h22

∂θ3
= −hf

21

∂h23

∂θ1
= −hf

22

∂h23

∂θ2
= hf

21

∂h23

∂θ3
= 0

∂h31

∂θ1
= 0

∂h31

∂θ2
= −hf

33

∂h31

∂θ3
= hf

32

∂h32

∂θ1
= hf

33

∂h32

∂θ2
= 0

∂h32

∂θ3
= −hf

31

∂h33

∂θ1
= −hf

32

∂h33

∂θ2
= hf

31

∂h33

∂θ3
= 0

and ∂hij/∂xk = 0 for all xk except θ1, θ2 and θ3.

Similarly, the derivatives of the camera-mirror pose rotation elements are

given by:



Appendix A: Jacobian of Projection Model 139

∂t11
∂θA

= 0
∂t11
∂θB

= −tf13
∂t11
∂θC

= tf12

∂t12
∂θA

= tf13
∂t12
∂θB

= 0
∂t12
∂θC

= −tf11
∂t13
∂θA

= −tf12
∂t13
∂θB

= tf11
∂t13
∂θC

= 0

∂t21
∂θA

= 0
∂t21
∂θB

= −tf23
∂t21
∂θC

= tf22

∂t22
∂θA

= tf23
∂t22
∂θB

= 0
∂t22
∂θC

= −tf21
∂t23
∂θA

= −tf22
∂t23
∂θB

= tf21
∂t23
∂θC

= 0

∂t31
∂θA

= 0
∂t31
∂θB

= −tf33
∂t31
∂θC

= tf32

∂t32
∂θA

= tf33
∂t32
∂θB

= 0
∂t32
∂θC

= −tf31
∂t33
∂θA

= −tf32
∂t33
∂θB

= tf31
∂t33
∂θC

= 0

and ∂tij/∂xk = 0 for all xk except θA, θB and θC .

If we now derive the quadric mirror elements expressed in equation (6.28),

it yields,

∂qCAM ij

∂xk
= 0, for xk ∈ {fu, fv, ν, u0, v0, tH1, tH2, tH3, θ1, θ2, θ3}

for all (i, j)

∂qCAM11
∂As

= t213

∂qCAM11
∂θk

= 2t11
∂t11
∂θk

+ 2t12
∂t12
∂θk

+ 2Ast13
∂t13
∂θk

∂qCAM12
∂As

= t13t23

∂qCAM12
∂θk

= t11
∂t21
∂θk

+ t21
∂t11
∂θk

+ t12
∂t22
∂θk

+ t22
∂t12
∂θk

+Ast13
∂t23
∂θk

+

+Ast23
∂t13
∂θk
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∂qCAM13
∂As

= t13t33

∂qCAM13
∂θk

= t11
∂t31
∂θk

+ t31
∂t11
∂θk

+ t12
∂t32
∂θk

+ t32
∂t12
∂θk

+Ast13
∂t33
∂θk

+

+Ast33
∂t13
∂θk

∂qCAM14
∂As

= −t213tT 1 − t13t23tT 2 − t13t33tT 3

∂qCAM14
∂Bs

= t13
∂qCAM14

∂tT 1
= −t211 − t212 − t213As

∂qCAM14
∂tT 2

= −t11t21 − t12t22 − t13t23As

∂qCAM14
∂tT 3

= −t11t31 − t12t32 − t13t33As

∂qCAM14
∂θk

= −2t11tT 1
∂t11
∂θk

− t11tT 2
∂t21
∂θk

− t21tT 2
∂t11
∂θk

− t11tT 3
∂t31
∂θk

−

−t31tT 3
∂t11
∂θk

− 2t12tT 1
∂t12
∂θk

− t12tT 2
∂t22
∂θk

− t22tT 2
∂t12
∂θk

−

−t12tT 3
∂t32
∂θk

− t32tT 3
∂t12
∂θk

− 2t13tT 1
∂t13
∂θk

As − t13tT 2
∂t23
∂θk

As −

−t23tT 2
∂t13
∂θk

As − t13tT 3
∂t33
∂θk

As − t33tT 3
∂t13
∂θk

As +
∂t13
∂θk

Bs

∂qCAM22
∂As

= t223

∂qCAM22
∂θk

= 2t21
∂t21
∂θk

+ 2t22
∂t22
∂θk

+ 2Ast23
∂t23
∂θk

∂qCAM23
∂As

= t23t33

∂qCAM23
∂θk

= t21
∂t31
∂θk

+ t31
∂t21
∂θk

+ t22
∂t32
∂θk

+ t32
∂t22
∂θk

+Ast23
∂t33
∂θk

+Ast33
∂t23
∂θk

∂qCAM24
∂As

= −t13t23tT 1 − t223tT 2 − t23t33tT 3

∂qCAM24
∂Bs

= t23
∂qCAM24

∂tT 1
= −t11t21 − t12t22 − t13t23As

∂qCAM24
∂tT 2

= −t221 − t222 − t223As

∂qCAM24
∂tT 3

= −t21t31 − t22t32 − t23t33As



Appendix A: Jacobian of Projection Model 141

∂qCAM 24
∂θk

= −t11tT 1
∂t21
∂θk

− t21tT 1
∂t11
∂θk

− 2t21tT 2
∂t21
∂θk

− t21tT 3
∂t31
∂θk

−

−t31tT 3
∂t21
∂θk

− t12tT 1
∂t22
∂θk

− t22tT 1
∂t12
∂θk

− 2t22tT 2
∂t22
∂θk

−

−t22tT 3
∂t32
∂θk

− t32tT 3
∂t22
∂θk

− t13tT 1
∂t23
∂θk

As − t23tT 1
∂t13
∂θk

As −

−2t23tT 2
∂t23
∂θk

As − t23tT 3
∂t33
∂θk

As − t33tT 3
∂t23
∂θk

As +
∂t23
∂θk

Bs

∂qCAM 33
∂As

= t233

∂qCAM 33
∂θk

= 2t31
∂t31
∂θk

+ 2t32
∂t32
∂θk

+ 2Ast33
∂t33
∂θk

∂qCAM 34
∂As

= −t13t33tT 1 − t23t33tT 2 − t233tT 3

∂qCAM 34
∂Bs

= t33
∂qCAM 34

∂tT 1
= −t11t31 − t12t32 − t13t33As

∂qCAM 34
∂tT 2

= −t21t31 − t22t32 − t23t33As

∂qCAM 34
∂tT 3

= −t231 − t232 − t233As

∂qCAM 34
∂θk

= −t11tT 1
∂t31
∂θk

− t31tT 1
∂t11
∂θk

− t21tT 2
∂t31
∂θk

− t31tT 2
∂t21
∂θk

−

−2t31tT 3
∂t31
∂θk

− t12tT 1
∂t32
∂θk

− t32tT 1
∂t12
∂θk

− t22tT 2
∂t32
∂θk

−

−t32tT 2
∂t22
∂θk

− 2t32tT 3
∂t32
∂θk

− t13tT 1
∂t33
∂θk

As − t33tT 1
∂t13
∂θk

As −

−t23tT 2
∂t33
∂θk

As − t33tT 2
∂t23
∂θk

As − 2t33tT 3
∂t33
∂θk

As +
∂t33
∂θk

Bs

∂qCAM 44
∂As

= (t13tT 1 + t23tT 2 −+t33tT 3)
2

∂qCAM 44
∂Bs

= −2 (t13tT 1 + t23tT 2 −+t33tT 3)

∂qCAM 44
∂Cs

= −1

∂qCAM 44
∂tT 1

= 2 (t11tT 1 + t21tT 2 + t31tT 3) t11 + 2 (t12tT 1 + t22tT 2 + t32tT 3) t12 +

+2 (t13tT 1 + t23tT 2 + t33tT 3) t13As − 2t13Bs



142 6. Method 2: Estimating Parameters ... using Bundle Adjustment

∂qCAM44
∂tT 2

= 2 (t11tT 1 + t21tT 2 + t31tT 3) t21 + 2 (t12tT 1 + t22tT 2 + t32tT 3) t22 +

+2 (t13tT 1 + t23tT 2 + t33tT 3) t23As − 2t23Bs

∂qCAM44
∂tT 1

= 2 (t11tT 1 + t21tT 2 + t31tT 3) t31 + 2 (t12tT 1 + t22tT 2 + t32tT 3) t32 +

+2 (t13tT 1 + t23tT 2 + t33tT 3) t33As − 2t33Bs

∂qCAM44
∂θk

= 2 (t11tT 1 + t21tT 2 + t31tT 3) ·
(

∂t11
∂θk

tT 1 +
∂t21
∂θk

tT 2 +
∂t31
∂θk

tT 3

)

+

+2(t12tT 1 + t22tT 2 + t32tT 3) ·
(

∂t12
∂θk

tT 1 +
∂t22
∂θk

tT 2 +
∂t32
∂θk

tT 3

)

+

+2 (t13tT 1 + t23tT 2 + t33tT 3) ·
(

∂t13
∂θk

tT 1 +
∂t23
∂θk

tT 2 +
∂t33
∂θk

tT 3

)

As −

−2

(

∂t13
∂θk

tT 1 +
∂t23
∂θk

tT 2 +
∂t33
∂θk

tT 3

)

Bs

where θk ∈ {θA, θB , θC}.
Concerning the scale factor α its derivatives are given by:

∂α
∂xk

= 0, where xk ∈ {fu, fv, ν, u0, v0, tH1, tH2, tH3, θ1, θ2, θ3}

∂α
∂xk

=
∂α

∂C1

∑

(

∂C1

∂qCAM ij

∂qCAM ij

∂xk

)

+
∂α

∂C2

∑

(

∂C2

∂qCAMij

∂qCAM ij

∂xk

)

+

+
∂α

∂C3

∑

(

∂C3

∂qCAMij

∂qCAM ij

∂xk

)

,

where xk ∈ {As, Bs, Cs, tT 1, tT 2, tT 3, θA, θB , θC} and

(i, j) ∈ {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)}

with
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∂C1

∂qCAM 11

= D
2
1

∂C2

∂qCAM 11

= 2A1D1
∂C3

∂qCAM 11

= A
2
1

∂C1

∂qCAM 12

= 2D1D2
∂C2

∂qCAM 12

= 2A1D2 + 2A2D1
∂C3

∂qCAM 12

= 2A1A2

∂C1

∂qCAM 13

= 2D1D3
∂C2

∂qCAM 13

= 2A1D3 + 2A3D1
∂C3

∂qCAM 13

= 2A1A3

∂C1

∂qCAM 14

= 0
∂C2

∂qCAM 14

= 2D1
∂C3

∂qCAM 14

= 2A1

∂C1

∂qCAM 22

= D
2
2

∂C2

∂qCAM 22

= 2A2D2
∂C3

∂qCAM 22

= A
2
2

∂C1

∂qCAM 23

= 2D2D3
∂C2

∂qCAM 23

= 2A2D3 + 2A3D2
∂C3

∂qCAM 23

= 2A2A3

∂C1

∂qCAM 24

= 0
∂C2

∂qCAM 24

= 2D2
∂C3

∂qCAM 24

= 2A2

∂C1

∂qCAM 33

= D
2
3

∂C2

∂qCAM 33

= 2A3D3
∂C3

∂qCAM 33

= A
2
3

∂C1

∂qCAM 34

= 0
∂C2

∂qCAM 34

= 2D3
∂C3

∂qCAM 34

= 2A3

and

∂α

∂C1
= ± −C3

C1

√

C2
2 − 4C1C3

− −C2 ±
√

C2
2 − 4C1C3

2C2
1

∂α

∂C2
= − 1

2C1
± C2

2C1

√

C2
2 − 4C1C3

∂α

∂C3
= ± −1

√

C2
2 − 4C1C3

For the derivatives of the reflection point coordinates RCAM, we obtain

the following expressions:

∂RCAM i

∂xk
= 0, with xk ∈ {fu, fv, ν, u0, v0} and i ∈ {1, 2, 3}

∂RCAM 1
∂tH1

= 1

∂RCAM 1
∂tH2

= 0
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∂RCAM 1
∂tH 3

= 0

∂RCAM 1
∂θk

=
∂h11

∂θk

(Aw1 + α(Bw1 −Aw1)) +
∂h12

∂θk

(Aw2 + α(Bw2 −Aw2)) +

+
∂h13

∂θk

(Aw3 + α(Bw3 −Aw3)) , where θk ∈ {θ1, θ2, θ3}

∂RCAM 1
∂xk

= (h11 (Bw1 −Aw1) + h12 (Bw2 −Aw2) + h13 (Bw3 −Aw3))
∂α

∂xk

,

with xk ∈ {As, Bs, Cs, tT 1, tT 2, tT 3, θA, θB , θC}
∂RCAM 2

∂tH 1
= 0

∂RCAM 2
∂tH 2

= 1

∂RCAM 2
∂tH 3

= 0

∂RCAM 2
∂θk

=
∂h21

∂θk

(Aw1 + α(Bw1 −Aw1)) +
∂h22

∂θk

(Aw2 + α(Bw2 −Aw2)) +

+
∂h23

∂θk

(Aw3 + α(Bw3 −Aw3)) , where θk ∈ {θ1, θ2, θ3}

∂RCAM 2
∂xk

= (h21 (Bw1 −Aw1) + h22 (Bw2 −Aw2) + h23 (Bw3 −Aw3))
∂α

∂xk

,

with xk ∈ {As, Bs, Cs, tT 1, tT 2, tT 3, θA, θB , θC}
∂RCAM 3

∂tH 1
= 0

∂RCAM 3
∂tH 2

= 0

∂RCAM 3
∂tH 3

= 1

∂RCAM 3
∂θk

=
∂h31

∂θk

(Aw1 + α(Bw1 −Aw1)) +
∂h32

∂θk

(Aw2 + α(Bw2 −Aw2)) +

+
∂h33

∂θk

(Aw3 + α(Bw3 −Aw3)) , where θk ∈ {θ1, θ2, θ3}

∂RCAM 3
∂xk

= (h31 (Bw1 −Aw1) + h32 (Bw2 −Aw2) + h33 (Bw3 −Aw3))
∂α

∂xk

,

with xk ∈ {As, Bs, Cs, tT 1, tT 2, tT 3, θA, θB , θC}

Finally, the Jacobian JI can then be computed by back-replacing the

previous equations such that the explicit expressions can be computed by
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equation (6.22). Since these equations are huge, we omit them.

For the Jacobian component JA, we first present the equations for the

reflected vector Vr and V′
r which are given by:

V′
r = − RCAM

‖RCAM‖
Vr = Vi − 2(Vi

TN)N = Vi − 2WN (6.39)

where

Vi =
1

(A1 −B1)2 + (A2 −B2)2 + (A3 −B3)2









A1 −B1

A2 −B2

A3 −B3









(6.40)

N =
1

∆N









N1

N2

N3









(6.41)

N1 = qCAM11RCAM 1 + qCAM 12RCAM 2 + qCAM13RCAM 3 + qCAM 14

N2 = qCAM21RCAM 1 + qCAM 22RCAM 2 + qCAM23RCAM 3 + qCAM 24

N3 = qCAM31RCAM 1 + qCAM 32RCAM 2 + qCAM33RCAM 3 + qCAM 34

∆N =
√

N2
1 +N2

2 +N2
3

W = Vi
TN =

(A1 −B1)N1 + (A2 −B2)N2 + (A3 −B3)N3

∆2
N

√

(A1 −B1)2 + (A2 −B2)2 + (A3 −B3)2
(6.42)

where, since the quadric matrix is symmetric, qCAMij = qCAMji.

We now present the derivatives of V′
r with respect to the state vector

components.
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∂V ′
r j

∂xk

=

∂RCAM j

∂xk
√

RCAM
2
1 +RCAM

2
2 +RCAM

2
3

−

−RCAM j

RCAM 1
∂RCAM 1

∂xk
+RCAM 2

∂RCAM 2
∂xk

+RCAM 3
∂RCAM 3

∂xk
√

(

RCAM
2
1 +RCAM

2
2 +RCAM

2
3

)3

(6.43)

for all xk in the state vector and j ∈ {1, 2, 3}.

Concerning the derivatives of Vr we start by presenting the derivatives

of its components:

∂Vij

∂xk

= 0, for all xk in the state vector and j ∈ {1, 2, 3}

and

∂Nj

∂xk
= 0, where xk ∈ {fu, fv, ν, u0, v0} and j ∈ {1, 2, 3}

∂Nj

∂xk
= qCAM1j

∂RCAM 1

∂xk

+ qCAM 2j

∂RCAM 2

∂xk

+ qCAM 3j

∂RCAM 3

∂xk

,

where xk ∈ {tH1, tH2, tH3, θ1, θ2, θ3} and j ∈ {1, 2, 3}
∂Nj

∂xk
= qCAMj1

∂RCAM 1

∂xk

+RCAM 1

∂qCAMj1

∂xk

+ qCAM j2
∂RCAM 2

∂xk

+

+RCAM2

∂qCAMj2

∂xk

+ qCAM j3
∂RCAM 3

∂xk

+RCAM 3

∂qCAM j3

∂xk

+
∂qCAM j4

∂xk

,

where xk ∈ {As, Bs, Cs, tT 1, tT 2, tT 3, θA, θB , θC} and j ∈ {1, 2, 3}

and
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∂∆N

∂xk
=

N1
∂N1
∂xk

+N2
∂N2
∂xk

+N3
∂N3
∂xk

√

N2
1 +N2

2 +N2
3

∂W
∂xk

=
(A1 −B1)

∂N1
∂xk

+ (A2 −B2)
∂N2
∂xk

+ (A3 −B3)
∂N3
∂xk

∆2
N

√

(A1 −B1)2 + (A2 −B2)2 + (A3 −B3)2
−

−2
(A1 −B1)N1 + (A2 −B2)N2 + (A3 −B3)N3

∆3
N

√

(A1 −B1)2 + (A2 −B2)2 + (A3 −B3)2
∂∆N

∂xk

for all xk in the state vector.

The derivatives of Vr are then given by:

∂Vrj

∂xk

=
2WNj

∆2
N

∂∆N

∂xk

− 2W

∆N

∂Nj

∂xk

+
2Nj

∆N

∂W

∂xk

,

for all xk in the state vector and for j ∈ {1, 2, 3}.
The Jacobian JA can now be computed using equation (6.16), that is:

JA = 2WA











(Vr1 − V ′
r 1)

∂Vr1−V ′

r1

∂fu
+ (Vr2 − V ′

r 2)
∂Vr2−V ′

r2

∂fu
+ (Vr3 − V ′

r 3)
∂Vr3−V ′

r3

∂fu

(Vr1 − V ′
r 1)

∂Vr1−V ′

r1

∂fv
+ (Vr2 − V ′

r 2)
∂Vr2−V ′

r2

∂fv
+ (Vr3 − V ′

r 3)
∂Vr3−V ′

r3

∂fv

...

(Vr1 − V ′
r 1)

∂Vr1−V ′

r1

∂θC
+ (Vr2 − V ′

r 2)
∂Vr2−V ′

r2

∂θC
+ (Vr3 − V ′

r 3)
∂Vr3−V ′

r3

∂θC










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Appendix B: Apparent Contour Term

In this appendix we derive the explicit expressions for the third term of

the cost function and its Jacobian to be included in the bundle adjustment

model. We start by presenting the cost function in relation to the apparent

contour.

According to equation (5.3) the cone that is back-projected by the camera

K through the conic C has its 3×3 upper-left matrix given by ΓA = KTCK.

Expanding this equation it yields:

ΓA =





















C11f2
u C11fuν + C12fufv C11fuu0 + C12fuv0 + C13fu

C11fuν+

+C12fufv

C11ν2 + 2C12fvν + C22f2
v

C11νu0 + C12 (νv0 + fvu0)+

+C13ν + C22fvv0 + C23fv

C11fuu0 + C12fuv0

+C13fu

C11νu0 + C12 (νv0 + fvu0)+

+C13ν + C22fvv0 + C23fv

C11u2
0 + 2C12u0v0 + 2C13u0+

+C22v2
0 + 2C23v0 + C33





















(6.44)

According to equation (5.5), the cone that is tangent to the quadric

mirror and has its vertex at the optical center of the pinhole camera has

its upper-left 3× 3 matrix given by ΓB = qCAM44Q3CAM − qCAMqCAM
T ,

where the quadric mirror is expressed by the set of equations (6.28).

The elements of the cone ΓB are then given by:

ΓB =































qCAM 44qCAM 11−

−qCAM
2
14

qCAM 44qCAM 12−

−qCAM 14qCAM 24

qCAM 44qCAM 13−

−qCAM 14qCAM 34

qCAM 44qCAM 12−

−qCAM 14qCAM 24

qCAM 44qCAM 22−

−qCAM
2
24

qCAM 44qCAM 23−

−qCAM 24qCAM 34

qCAM 44qCAM 13−

−qCAM 14qCAM 34

qCAM 44qCAM 23−

−qCAM 24qCAM 34

qCAM 44qCAM 33−

−qCAM
2
34































(6.45)
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Since the cone matrices are symmetric, they have only six unique elements

with five degrees of freedom, due to scaling. ΓA and ΓB are projectively

equivalent. Therefore to compare them we use the five independent ratios.

The third term of the cost function can then be formulated as:

JC = WC

(

ΓA12

ΓA11
− ΓB12

ΓB11

)2

+WC

(

ΓA13

ΓA11
− ΓB13

ΓB11

)2

+

+WC

(

ΓA22

ΓA11
− ΓB22

ΓB11

)2

+WC

(

ΓA23

ΓA11
− ΓB23

ΓB11

)2

+

+WC

(

ΓA33

ΓA11
− ΓB33

ΓB11

)2

(6.46)

where WC is the weight factor to this apparent contour error term.

The Jacobian of this new term is calculated by taking derivatives of

equation (6.46) with respect to all the components of the state vector. We

start by presenting the derivatives of the elements of the cone matrices.

∂ΓA11
∂fu

= 2C11fu

∂ΓA11
∂xk

= 0, for all xk ∈ {fv, ν, u0, v0, tH1, tH2, tH3, ...

...θ1, θ2, θ3, As, Bs, Cs, tT 1, tT 2, tT 3, θA, θB, θC}
∂ΓA12
∂fu

= C11ν + C12fv

∂ΓA12
∂fv

= C12fu

∂ΓA12
∂ν

= C11fu

∂ΓA12
∂xk

= 0, for all xk ∈ {u0, v0, tH1, tH2, tH3, θ1, θ2, θ3, ...

..., As, Bs, Cs, tT 1, tT 2, tT 3, θA, θB , θC}
∂ΓA13
∂fu

= C11u0 + C12v0 +13

∂ΓA13
∂u0

= C11fu
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∂ΓA13
∂v0

= C12fu

∂ΓA13
∂xk

= 0, for all xk ∈ {fv, ν, tH1, tH2, tH3, θ1, θ2, θ3, ...

..., As, Bs, Cs, tT 1, tT 2, tT 3, θA, θB , θC}
∂ΓA22
∂fv

= 2C22fv + 2C12ν

∂ΓA22
∂ν

= 2C11ν + 2C12fv

∂ΓA22
∂xk

= 0, for all xk ∈ {fu, u0, v0, tH1, tH2, tH3, θ1, θ2, θ3, ...

..., As, Bs, Cs, tT 1, tT 2, tT 3, θA, θB , θC}
∂ΓA23
∂fv

= C12u0 + C22v0 +C23

∂ΓA23
∂ν

= C11u0 + C12v0 +C13

∂ΓA23
∂u0

= C11ν + C12fv

∂ΓA23
∂v0

= C12ν + C22fv

∂ΓA23
∂xk

= 0, for all xk ∈ {fu, tH1, tH2, tH3, θ1, θ2, θ3, ...

..., As, Bs, Cs, tT 1, tT 2, tT 3, θA, θB , θC}
∂ΓA33
∂u0

= 2C11u0 + 2C12v0 + 2C13

∂ΓA33
∂v0

= 2C12v0 + 2C22v0 + 2C23

∂ΓA33
∂xk

= 0, for all xk ∈ {fu, fv, ν, tH1, tH2, tH3, θ1, θ2, θ3, ...

..., As, Bs, Cs, tT 1, tT 2, tT 3, θA, θB , θC}

and for the cone matrix ΓB , it yields:

∂ΓBij

∂xk
= qCAM 44

∂qCAMij

∂xk

+ qCAMij

∂qCAM 44

∂xk

− qCAM i4

∂qCAM j4

∂xk

−

−qCAM j4
∂qCAM i4

∂xk

for all xk in the state vector and where i, j ∈ {1, 2, 3}.
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The derivative of the cost function term is then:

∂JC

∂xk
= 2WC

„
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where xk represents all the elements of the state vector and j ∈ {1, 2, 3},
which finishes the computation of Jacobian JC .
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Chapter 7

Discussion and Conclusions

In this chapter we discuss the main conclusions drawn throughout the thesis.

A general discussion on noncentral catadioptric systems, the main theme of

the work, is also presented. We start by first summarizing the work described

in the text and then we discuss its main conclusions.

The vision systems used and studied in our work are noncentral cata-

dioptric systems composed of pinhole or orthographic cameras and curved

mirrors whose shape is described by a non degenerate quadric (a description

that includes hyperboloids, paraboloids and ellipsoids, being spheres a par-

ticular case of the last ones). The non centrality is achieved by positioning

mirror and camera in an unconstrained pose in relation to each other (loca-

tion and orientation). Central configurations of the vision system and those

with degenerate quadric mirrors are also suitable for the applications of our

methods but they are not the object of our study.

The first topic addressed is the projection model of these vision sys-

tems. As mentioned in the introduction, as far as the author knows, there

is no closed-form explicit expression that maps 3D world points to image.

The projection phenomenon is then explained by either the Snell’s Law or

the Fermat principle in implicit multiple variable nonlinear equations which

155
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make the performance of the projection search difficult. We then proved the

existence of an additional constraint to impose to the reflection point in the

projection process. This constraint allowed the description of the projection

model by means of an implicit nonlinear expression on a single variable and

closed-form. This mapping of a general 3D world point into image became

quicker to determine and the results generally present higher accuracy.

The second topic addressed is the calibration of the visual system. We

developed and presented in chapter 5 a calibration method to estimate the

quadric mirror parameters (allowing the identification and classification of

the mirror shape without any a priori information), its position and orien-

tation in relation to the camera and also the pose of the visual system in

relation to the world reference frame (extrinsic parameters). The a priori

data are the intrinsic parameters of the pinhole perspective camera and a

set of point coordinates in the world reference frame (or local for simplic-

ity, without loss of generality). Additionally, although not preemptive, we

showed that the use of the apparent mirror contour can improve the accuracy

of the results.

In chapter 6 we propose another calibration method to estimate the in-

trinsic parameters of the pinhole camera, the parameters of the quadric mir-

ror and the position and orientation of the camera in the world reference

frame and also in relation to the mirror surface. The a priori data needed

is a set of correspondences between image pixels and incident directions in

space. This requirement is thus the vision system calibration in the sense of

a general camera model and this method can then be regarded as a refine-

ment of the one previously presented in the sense that the results obtained

by means of the method described in chapter 5 can be used as inputs of the

method of chapter 6 to improve the accuracy of the calibration. To achieve

the a priori ray calibration for this method we also reviewed a ray calibra-

tion method that provides the needed correspondences between pixels and
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direction of light rays in space.

After this summary of the work presented in the thesis, we now draw the

main conclusions of the work. Although we do not go into the details, they

are summarized in the summary and conclusions section of each chapter.

The full parameterization of a catadioptric system includes the intrin-

sic parameters of the perspective camera (or of any other type of primary

optics), its pose in relation to the specular surface (mirror), the shape pa-

rameters of the mirror itself and finally, the camera pose in relation to the

world reference frame (extrinsic parameters). The total number of parame-

ters depends on the framework adopted to the rigid transformation matrices,

whether rotations are expressed by Euler angles - the standard case - or by

quaternions or by 9-element rotation matrices (the affine case) with addi-

tional orthogonality constraints. The shape of the mirror can also be more

or less simplified, being in the standard case expressed by non-degenerate

quadric shaped surfaces. The full parameterization of a general catadioptric

system is hence composed by around 20 independent parameters.

Our work described above in the text concerns the calibration of the

parameters of such catadioptric systems. Whether the calibration of the

system was full or partial, some methods and insights into the problem were

proposed. For the purpose of calibration, we made a lot of effort investigating

the image formation phenomenon too.

The main conclusion we draw in the present thesis is that full calibration

of general catadioptric systems composed of quadric shaped mirrors is dif-

ficult and extremely sensitive to many noise sources however is achievable.

Although accurate calibration can be in general achieved, some conditions

must be met, as dense local structure information and high image resolution.

We think that this is due to the type of optical projection, particularly to non

centrality and its consequence of the non existence of an explicit closed-form

projection model.
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The fact that the incident light rays that are projected into the image

do not intersect each other in a single viewpoint makes the derivation of an

explicit projection model difficult. It is not possible, as far as the author is

aware of, to express explicitly the image point as function of the world point

projected, in the noncentral systems studied. Therefore the calibration is

often performed by using the projection of points since it is difficult to es-

tablish general properties for the projection of higher dimensional features as

lines, curves in space (including planar ones as polygons and conics, and non

planar ones as quartics) or surfaces. The establishment of other geometric

properties as epipolar geometry or image of absolute conic is also difficult

and usually provides expressions that are extremely sensitive to noise either

in the calibration parameters or in the measurements.

Regarding the calibration of such systems using low-level features, that

is to say, points and correspondences between image points and 3D scene

points, a variety of strategies were already tested. The standard and most

obvious approach (at least in the author’s point of view) is the back projec-

tion of the image points by intersecting the emanated rays from the optical

center with the specular surface. The computation of the correspondent inci-

dent ray is straightforward by computing the normal vector to surface. This

example is sufficient to visualize spatially the difference between central and

noncentral systems.

In the case of central ones, there is a single point, known to be the

focus of the quadric surface or of any of its longitudinal conic sections. This

point (easily known) can be used to rectify the direction of the incident ray

computed and this can be regarded as a reset error stage. Instead of that,

the locus of the viewpoints of noncentral systems is their caustic surface,

difficult to estimate for general unconstrained catadioptric systems and as

a consequence they are of small help in the back projection type methods.

One can intuitively understand the extremely high sensitivity to small errors
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of the back projection process (that includes the inversion of the intrinsic

parameters of a perspective camera, a specular reflection in an uncertain

surface positioned in an also uncertain position and orientation in relation

to the camera).

We observed in the comprehensive set of our experiments that the param-

eters that have more influence in the calibration accuracy are the principal

point and the orientation of the camera in relation to the mirror. On the

other hand, although important as error sources, the focal length and the

displacement of the camera in relation to the mirror can compensate each

other by cancelling out errors, mainly if one talks about the focal length

and the distance to the mirror in the optical axis direction. This fact is the

ambiguity induced by the mapping between different dimensional spaces (2D

and 3D).

Concerning now the metric to be used to achieve the calibration, many

solutions have been already proposed (by our and other works) for this pur-

pose. Either using geometrical or algebraic properties, the cost function

built to nonlinear methods or linear equations used in linear methods are

of extremely high importance to the calibration, influencing the accuracy,

rate of convergence and even chance of convergence. Although geometric

distances are usually preferable to algebraic ones, since they give a direct

physical metric to minimize and generally a good calibration achieved by

optimizing geometric errors is undoubtedly good, algebraic distance metrics

are many times easier to derive and to measure (usually provided by indirect

expressions that depend on measures). Whereas physical interpretations are

not always available or easy to understand, if the appropriate restrictions

are imposed to the parameters (and there is a wide variety of mathematical

tools to do so), the convergence can be easily achieved.

We have also observed in the experiments and simulations that the cost

function is usually far from being monotonic in the parameter space. This
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is a real obstacle to many nonlinear iterative methods and even to linear

ones. Or in other words, this is why linear methods are usually important

to approximate the solution that is to be refined by nonlinear ones. Effects

of cancelling out errors, as those mentioned for the focal length and distance

camera-mirror and many other similar effects, most common in 20 parameter

space problems, tend to give the cost function a lot of local minima and

often lead to situations where the global optimal point is the deepest one

of an extremely narrow hole, most difficult to find. This is the reason why

continuous descent optimization strategies often stuck in a local minimum

that prevents global optimization. We also concluded that these methods can

be positively used in conjunction with random strategies for reset purposes

and with the help of some algebraic manipulations of the cost functions.

Although difficult, if much effort and attention is put in the calibration

process, the accuracy achieved can be good and led to very small geometric

error. So far, in our real experiments the best full calibration ever made of

a general noncentral catadioptric system was achieved using a hyperboloid

mirror. The mean error for the geometric shortest distance from the 3D

points to the incident calibrated ray was of about 0.6mm in a 400mm range

on a set of 250 points. Partial calibration subsequently performed to the

system lead to smaller error values, however the enhancement achieved was

not of big relevance (since the calibration achieved in the first stage was very

good).

Recently a higher level of abstraction was attained by the models of

generalized cameras. Those cameras associate each image pixel to the light

ray direction responsible for it, irrespective of the path undertaken by the

light (which may account for several reflections and refractions and that

for catadioptric vision systems is only a specular reflection and a possible

lens refraction in the primary optical element). This type of vision systems

can thus model and represent almost every existing camera. They are often
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calibrated using the same strategies used for noncentral catadioptric systems

with low-level features such as points. Higher level ones generally assume

continuity of the projection model equations which is contradictory to the

philosophy. In the calibration of these type of cameras we also concluded that

the density of features also plays a key role in its accuracy. We observed that

for sparse sets of calibration points the error tends to increase very quickly.

The calibration of those systems is hence of great interest to the calibration

of generalized catadioptric systems and vice-versa.

Another important conclusion drawn by the direct observation of the

behavior of the calibration algorithms is the fact that some additional data

can dramatically enhance the quality of the estimation results. The apparent

contour of the quadric mirror, for instance, or the orthogonality of rotation

matrices can be used either by restricting the parameters or by reducing the

dimensionality of the parameterization.

In conclusion, our work added some contributions to the field of cata-

dioptric vision, mainly in the study of the image formation and calibration

of the system parameters. Whether full or partial, the calibration regarded

as the estimation of these parameters tend to be difficult due to the nature of

the projection which is noncentral. Good accuracy can however be achieved

allowing noncentral catadioptric vision systems to be used in highly accurate-

driven applications combining their advantages over the central ones with the

accuracy needed for those applications.

We also emphasize the fact that in practice, beyond the scope of our

study, there are applications of those vision systems mainly to controlled

robotic setups but also to real quotidian applications. It can be noticed that

the majority of the visual systems used in accuracy-driven applications al-

most always try to guarantee the central projection property even paying

the price of reduced flexibility in the design and possibility to change the

optical configuration. Instead of that, for applications that don’t need ex-
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tremely high accurate measures, the versatility of the design and the real

possibility of changing the system parameters during the application (like

zooming) are often considered to be more important than the centrality of

the projection. That is why many noncentral catadioptric vision systems are

less used is those applications. We believe that with adequate calibration

methods noncentral catadioptric vision systems can be advantageously used

in some accurate-driven applications.
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[51] Nuno Gonçalves and Helder Araújo. Rigid motion estimation for non-

central catadioptric images. In IEEE - 17th International Conference

on Pattern Recognition, Cambridge, UK, August 2004.

[52] Nuno Gonçalves and Helder Araújo. Estimating parameters of non-
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