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Abstract. Applications of visual control of motion require that the relationships between motion in the scene and
image motion be established. In the case of active tracking of moving targets these relationships become more complex
due to camera motion. This work derives the position and velocity equations that relate image motion, camera
motion and target 3D motion. Perspective projection is assumed. Both monocular and binocular tracking systems
are analyzed. The expressions obtained are simplified to decouple the control of the different mechanical degrees of
freedom. The simplification errors are quantified and characterized. This study contributes for the understanding
of the tracking process, for establishing the control laws of the different camera motions,for deriving test signals to
evaluate the system performance and for developing egomotion compensation algorithms.

1 Introduction

Fig. 1.: The Active Vision Systems at ISR. Right: The modular camera pan and tilt unit MVS. Left: The
ISR-MDOF robot head.

Visual control of motion is a widely studied subject. Several papers have addressed the problem of
controlling motion using visual information [1, 2, 3, 4]. In these applications, the relationships between image
motion and 3D motion in the scene have to be established. In active tracking applications these relationships
become more complex due to camera motion. Works like [5] and [6] address mainly the control aspects of
tracking. Cameras are modeled as a constant gain and the effects of perspective projection are not considered.
Affine models are assumed in [7] and approximations in the perspective model are considered in [8]. Many of
these works rely on closed-loop control strategies to reduce the influence of modeling simplification. However
some visual behaviors such the saccadic motion typically use open-loop configuration.
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In this paper we derive the mathematical relationships between image motion, camera motion and target
3D motion in the scene, both for monocular and binocular tracking applications. Perspective projection is
considered by assuming a camera pinhole model. Both position and velocity equations are derived. The results
obtained allow a better understanding of the tracking process as a regulation control problem. Strategies
for both monocular and binocular tracking are developed. The simplifications of the equations derived
to decouple the degrees of freedom of the vision system are discussed. Control laws for different visual
behaviors (smooth pursuit, vergence and saccade) are established and approximation errors are studied and
characterized.

We are using the results of the present work to derive test signals to characterize the performance and
robustness of the active tracking algorithms. Egomotion compensation techniques are being studied as well.
The knowledge of the relationship between velocity in image, camera motion and targets 3D velocity can also
be useful in the development of high-level visual behaviors such as target segmentation in an environment
with multiple moving targets.

2 Monocular Tracking

Fig. 2.: Image formation process in monocular tracking. The 3D scheme, exhibiting the variables and reference
frames used in mathematical analysis, is shown from two different points of view.

Fig. 1(R) depicts our MVS unit. The camera has two degrees of freedom: pan and tilt. Both rotation
axes go through the optical center. Camera undergoes pure rotation motion. The typical goal for a tracking
application is to move the camera in such a way that target is projected in the center of image. In 3D
space it means that the optical axis must be aligned with the target. This section derives the mathematical
relationship between 3D target motion, camera motion and projection in image. Camera motion is typically
known by using motor encoders.

The scheme of figure 2 describes the image formation process. Assume a standard pinhole model where
camera performs a perfect perspective transform with center O (camera optic center) at a distance f (focal
length) of the retinal plane. Vector M = (X,Y, Z)t represents target cartesian coordinates in <i(O,xi,yi, zi),
(inertial reference frame) . Target 3D position can also be represented by spherical coordinates (ρ, θ, φ).
<c(O,xc,yc, zc) is the referential frame attached to the camera where zc is aligned with the optical axis and
xc and yc are aligned with horizontal and vertical axes in the image. The retinal plane is perpendicular to the
optical axis. Target is projected at point (x, y) in image plane. This point is represented as an homogeneous
3D vector λm = λ(x, y, 1) corresponding to a line of a given direction passing through the optical center (2D
projective space). Camera first rotates in pan and then in tilt (Fick model). Camera pan and tilt positions
are given by αp and αt (the rotation angles around y and xc). Rp and Rt are the pan and tilt rotation
matrices
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

sx sψ u0

0 sy v0

0 0 1


 =



F 0 0
0 F 0
0 0 1


 (1)



A is the matrix of the intrinsic parameters in the projection (see equation 1). sx and sy stand for the
scaling along the horizontal and vertical axes of the image plane, sψ gives the skew between the axes and
(u0, v0) are the principal point coordinates. Notice that A is an upper triangular matrix, thus it is always
invertible. It is assumed the axes are orthogonal (sψ = 0), the optical axis intersects the retinal plane at the
origin of the image referential (u0 = v0 = 0) and sx = sy = F .

2.1 Position equations

zm = ARtt(αt)R
t
p(αp)M (2)

Equation 2 expresses the relationship between target 3D coordinates M in the inertial frame and pro-
jective coordinates m in camera reference frame. Notice z is target Z coordinate in camera referential,
m = (x, y, 1)t the projective coordinates and (x, y) target coordinates in image plane.

z′

z
Rp(∆αp)Rt(∆αt)Rt(αt)A

−1m′ = Rt(αt)A
−1m (3)

Camera moves ∆αp in pan and ∆αt in tilt. New camera rotation angles are (αp + ∆αp, αt + ∆αt).
Equation 3 establishes the relationship between m′, the actual target projective coordinates, and m, the
projective coordinates before camera motion. Consider ∆αp and ∆αt are the tracking angular position
errors in pand and tilt. If target spherical coordinates are (ρ, θ, φ) (see Fig. 2) then ∆αp = θ − αp and
∆αt = φ− αt.
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Whenever camera moves to compensate the angular position errors, the target is projected in the center
of the image and m′ becomes equal to (0, 0, 1)t. Equation 4 is derived from 3 making m′ = (0, 0, 1)t. It
establishes the relationship between camera tilt position αt, target position in image (x, y) and angular
position errors (∆αp, ∆αt).

m̃ =



x̃
ỹ
1


 =



F cos(αt) tan(∆αp)

F tan(∆αt)
1


 (5)

Both x and y expressions are complex and highly non-linear. If the target is being tracked by the active
vision system , it is reasonable to assume that most of time the target image is nearly in the center. This
assumption is used to derive equation 5, a simplification of 4. Using 5 pan and tilt control can be decoupled.
x position is only related with pan error and y position is related with tilt error.

Epos =

[
Expos
Eypos

]
=

[
x− x̃
y − ỹ

]
(6)

µpos =

[
µxpos
µypos

]
=

N2∑

i=1

Epos(i)P (i) (7)

Φpos =

[
(σxpos)

2 φxypos
φxypos (σypos)

2

]
=

N2∑

i=1

(Epos(i)− µpos)(Epos(i)− µpos)tP (i) (8)

Camera angular position (αp, αt) is obtained by reading motor encoders. Visual processing determines tar-
get position in image (x, y). The goal is to move the camera to compensate for the angular errors (∆αp, ∆αt).
Equation 4 performs the exact computation of (∆αp, ∆αt) given (x, y). Epos is the error in approximating
equation 4 by 5 (see equation 6). Epos is a function of αt, ∆αp and ∆αt. Consider αt, ∆αp, ∆αt ∈ [−45◦, 45◦]
and the interval discretized in N samples uniformly spaced. For each camera tilt position αt there are N2

possible combinations for (∆αp, ∆αt). The pan and tilt angular errors are assumed to be statistically in-
dependent. P (i) is the joint probability function of (∆αp, ∆αt). Fixate αt, for each pair (∆αp, ∆αt) there
is a corresponding error vector Epos. Equation 7 computes the average error µpos for a certain camera tilt
position αt. Expression 8 computes the covariance matrix Φpos.
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Fig. 3.: Quantitative analysis of error function Ex
pos and Eypos assuming a normal probability distribution for

the angular errors in pan and tilt. Above: average error in X (-) and Y (- -). Below: error standard deviation
in X (-) and Y (- -).

If the system is tracking the target then, most of time, target image is not far from the center. It is
reasonable to assume that both pan and tilt errors (∆αp and ∆αt) are statistically described by a normal
distribution of average 0◦. P (i), in equations 7 and 8, is a bidimensional probability density function for a
normal distribution with zero average and standard deviation of 12◦ in pan and 8◦ in tilt. Fig. 3 depicts Epos

average, standard deviation and covariance as a function of αt. The average error in X and the covariance
φxypos are zero and µypos is an odd function. Both σxpos and σypos (standard deviation in X and Y) increase with
the module of camera tilt angle.

The data depicted in Fig. 4 is useful to understand the behavior of the error function Epos. Different
camera tilt positions were studied. First column is for αt = −23◦, the second for αt = 0◦ and the third
for αt = 23◦. Whenever αt is known target position in image depends on the angular pan and tilt errors
(∆αp, ∆αt). First row depicts the exact and approximated target positions in image for different tilt angles.
The second row exhibits the corresponding error X coordinate Ex

pos. The third row shows the error in Y axis
Eypos.

Observe the exact and estimated positions of target projection in image (first row). Assume the angular
pan error ∆αp constant. In 3D space target is positioned somewhere in a vertical plane going trough the
origin O of the inertial referential frame (see Fig. 2). The plane is projected in a line in the image. If αt = 0
the line is vertical and if αt 6= 0 the line has a slope whose module is inversely proportional to the module of
camera tilt angle. The approximation of equation 5 always projects the plane in a vertical line in the image.
Thus, as depicted in Fig. 4, x̃ = x whenever αt = 0 or y = 0. The approximation error in X axis Expos is a
function of αt, ∆αp and ∆αt. Notice that:

– Expos(0, ∆αp, ∆αt) = 0
– Expos(αt, ∆αp, ∆αt) = −Ex(αt,−∆αp, ∆αt)
– Expos(αt, ∆αp, ∆αt) = Ex(−αt, ∆αp,−∆αt)

Consider the angular tilt error ∆αt constant. In 3D space the target is somewhere in a conic surface whose
vertice is the origin O of the inertial referential frame (see Fig. 2). The image projection of these surfaces are
the hiperbolic lines depicted in Fig. 4 (first row). Whenever ∆αt = −αt the conic surface degenerates in the
OXZ plane which is projected in an horizontal line. The approximation of equation 5 generates horizontal
lines in image. Therefore ỹ = y whenever ∆αt = −alphat or ∆αp = 0. Some properties of Eypos, observable
in Fig. 4, are itemized below:

– Eypos(αt, 0, ∆αt) = 0
– Eypos(αt, ∆αp,−αt) = 0
– Eypos(αt, ∆αp, ∆αt) = Ey(αt,−∆αp, ∆αt)
– Eypos(αt, ∆αp, ∆αt) = −Ey(−αt,−∆αp,−∆αt)

The approximation error Epos = [Expos, E
y
pos]

t increases with both angular position errors (∆αp, ∆αt)
and camera tilt position. If camera tilt angle αt take a great value the approximation error becomes signif-
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Fig. 4.: Approximation error Epos(E
x
pos, E

y
pos) assuming F = 1. Each column corresponds to a certain camera

tilt position: first column αt = −23◦, second column αt = 0◦ and third column αt = 23◦. First row: target
projection in image (exact (o) and approximated (*) position). Second row: Ex

pos as a function of (∆αp, ∆αt).
Third row: Eypos as a function of (∆αp, ∆αt).

icant even if the target is projected near the center of the image. Therefore to approximate equation 4 by
equation 5, the operation range of tilt degree of freedom can not be large.

This last result yields important conclusions reagarding the mechanical construction of an active tracking
system. We have been assuming a Fick model of rotation (pan and tilt). Our systems have been designed
for tracking targets moving in the ground plane (see Fig 1). The pan operating range is much larger than
tilt operating range. The values of αt are always less than 23◦ (the mechanical limit for the tilt degree of
freedom) and the errors in assuming the approximations of equation 5 are small. Consider a system, with the
same purposes, designed with the camera first rotating in tilt and then in pan (Helmholtz model). Assuming
this αt would be replaced by αp in the derived equations. The errors in using the approximations would
be more significant because the operation range of αp would be larger. Moreover the system mechanical
construction would involve additional difficulties. It is always easier to achieve large operation ranges in the
independent rotation than in the dependent one. For these reasons it is advisable to design the system with
the camera rotating first around the angle where larger operation ranges are requested.

2.2 Velocity Equations

This section derives the mathematical expressions for the target velocity in the image. Velocity in the image
depends on camera motion and target 3D velocity. Camera motion induces velocity in the image even when
the scene is static. This self-induced motion is called in the literature egomotion. Target motion in 3D space
also induces motion in image. Tracking is achieved when camera moves in such a way that egomotion cancels



out the velocity induced by motion in the scene and target is kept in the same position in successive frames.
In this paper it is assumed that camera intrinsic parameters are kept constant along time (Ȧ = 0).

żm+ zṁ = AṘtt(αt)R
t
p(αp)M +ARtt(αt)Ṙ

t
p(αp)M +ARtt(αt)R

t
p(αp)Ṁ (9)

K =

[
1 0 −x
0 1 −y

]
. (10)

Equation 9 is derived by differentiating 2. ṁ = [ẋ, ẏ, 0]t where [ẋ, ẏ]t is the velocity vector in image. ż is
target velocity along Z axis in camera reference frame. In order to derive image velocity vector, matrix K is
defined in such a way that (ẋ, ẏ)t = 1

zK(żm + zṁ).

[
ẋ
ẏ

]
= KAPtA

−1mα̇t +KARtt(αt)PpRt(αt)A
−1mα̇p +

1

z
KARtt(αt)R

t
p(αp)Ṁ (11)

Equation 11 is derived from 9. Pp and Pt are the diferential generators of the abelean groups Rt
p()

and Rt
t(). Velocity in image (ẋ, ẏ)t both depends on camera velocity of motion (α̇p, α̇t) (egomotion) and

3D velocity in the scene Ṁ. The egomotion terms do not depend on scene 3D coordinates because camera
describes pure rotation motion.

[
ẋ
ẏ

]
= −Wego

[
α̇p
α̇t

]
+Wtgt

[
θ̇

φ̇

]
(12)

The target velocity in 3D space can be described in rectangular (Ẋ, Ẏ , Ż) or spherical (ρ̇, θ̇, φ̇) coordinates.
When the target motion is described in rectangular coordinates, velocity in the image depends on Ẋ, Ẏ and
Ż. On the other hand, whenever spherical coordinates are used velocity in the image depends only on θ̇ and
φ̇. This happens because ρ̇ is the velocity component along the projective ray that can not be observed in
the image (for a point target). Spherical coordinates simplify the derivation and understanding of velocity
equations. Equation 12 yields the target velocity in the image. The first term refers to egomotion, showing
the contribution of camera motion to image velocity. Matrix Wego is a 2x2 weighting matrix that depends
on the image point coordinates and camera tilt angle. The second term refers to the velocity in the image
due to the target motion in the scene. Wtgt is a 2x2 matrix which is a function of x, y and αt. Both Wego

and Wtgt are easily computed from equation 11. Fig. 5 depicts the velocity fields induced in image. The
first two rows show the velocities due to camera pan and tilt motion (egomotion). The third and fourth rows
exhibit the velocity fields induced by target motion in space.

[
α̇p
α̇t

]
= W−1

egoWtgt

[
θ̇

φ̇

]
=




1 x(FS(αt)+yC(αt))

(yS(αt)−FC(αt))
√
x2+(FC(αt)−yS(αt))2

0 −
√
x2+(FC(αt)−yS(αt))2

yS(αt)−FC(αt)



[
θ̇

φ̇

]
(13)

The goal in a tracking application is to move the camera in a such a way that egomotion compensate the
image velocity induced by motion in the scene. Assuming that the target velocity is (θ̇, φ̇), perfect tracking
is achieved whenever camera pan and tilt velocities are computed by equation 13. Wego is a singular matrix
only when y = F

tan(αt)
. This happens whenever target projection lays on an horizontal line that contains

the intersection point of the pan rotation axis with the image plane. That is the only case in which perfect
velocity regulation can not be achieved. Notice that if φ̇ = 0, perfect tracking is achieved by making α̇p = θ̇
and α̇t = 0. The velocity induced in the image by the target motion can be compensated for by camera pan
rotation. However if α̇t 6= 0 the camera must move in pan and tilt to keep target position in image. For this
case, the residual velocity by making α̇p = 0 and α̇t = φ̇ can be observed in Fig. 5 (last row)).

[
ẋ
ẏ

]
≈
[
F cos(αt)(α̇p − θ̇)

F (α̇t − φ̇)

]
(14)

Similarly to what was done for position analysis, equation 12 is simplified to decouple pan and tilt control.
Equation 12 is obtained from equation 14 assuming (x, y) = (0, 0). The image velocity in Y axis only depends
on camera tilt velocity and φ̇ and perfect tracking is achieved whenever α̇t = φ̇. The same happens for the
X axis, camera pan velocity and θ̇.
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Fig. 5.: Velocity field in image. Each column corresponds to a certain camera tilt position: first column
αt = −23◦, second column αt = 0◦ and third column αt = 23◦. First row: (α̇p, α̇t) = (1, 0)(rad/s) and

(θ̇, φ̇) = (0, 0)(rad/s). Second row: (α̇p, α̇t) = (0, 1)(rad/s) and (θ̇, φ̇) = (0, 0)(rad/s). Third row: (α̇p, α̇t) =

(0, 0)(rad/s) and (θ̇, φ̇) = (1, 0)(rad/s). Fourth row: (α̇p, α̇t) = (0, 0)(rad/s) and (θ̇, φ̇) = (0, 1)(rad/s). Fifth

row: (α̇p, α̇t) = (0, 1)(rad/s) and (θ̇, φ̇) = (0, 1)(rad/s). Large rectangle (-): image with a field of view of
86◦x86◦. Small rectangle (:): image with a field of view of 24◦x18◦.
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Fig. 6.: Binocular System. Left:Neck pan and tilt. Right: Vergence Control

2.3 Binocular Tracking

In previous section the position and velocity equations for monocular tracking were derived. In this section
we focus on the equations for binocular tracking. As depicted in figure 6 two cameras are mounted in a
moving platform with length 2B (the baseline). The platform is able to rotate in pan (αp angle) and tilt
(αt angle). Each eye has and additional pan degree of freedom called vergence (βL and βR angles). It is
assumed that vergence is symmetric (βL = −βR = β). Binocular tracking is achieved by controlling the
three independent degrees of freedom: pan (αp), tilt (αt) and vergence (β).

Imagine a third camera positioned in the center of the platform called the cyclopean eye. Neck pan and
tilt degrees of freedom align cyclopean Z (forward-looking) axis with target. Vergence control adjusts both
camera positions so that target images are projected in the corresponding image centers. Assuming that
target is foveated with symmetric vergence angles, these only depend on target motion along the cyclopean
Z (forward-looking) axis i.e. on the cyclopean depth of the object. Therefore binocular tracking can be split
in two sub-problems: cyclopean eye control and vergence control. Tracking the target with the cyclopean
eye is essentially a monocular tracking problem as studied in last section. To perform such a tracking it
is necessary to transfer visual information from both retinas to the cyclopean camera. Vergence control is
achieved using retinal flow disparity.

2.4 Pan and Tilt Control
{
zlml = ARtp(β)Rtt(αt)R

t
p(αp)M +ARtp(β)t

zrmr = ARtp(−β)Rtt(αt)R
t
p(αp)M −ARtp(−β)t

(15)

Vector M represents target cartesian coordinates in the cyclopean inertial frame. Target is projected
in the left image at (xl, yl) and in the right image at (xr, yr). The corresponding homogeneous vectors are
λml and λmr. zl and zr are target Z coordinates in left and right camera reference frames. Equation 15
establishes the relationship between ml, mr and M. αp and αt are platform pan and tilt angles, β is the
symmetric vergence angle and t = (B, 0, 0)t where 2B is the baseline.

{
zlml = zARtp(β)A−1m+ARtp(β)t

zrmr = zARtp(−β)A−1m−ARtp(−β)t
(16)

Assume (x, y) are target projection coordinates in the cyclopean eye, λm is the corresponding homoge-
neous vector and z represents target cyclopean depth. Equation 16 is derived from 15 using 2. The goal of
the neck pan and tilt control is to align cyclopean Z axis (forward-looking) with the moving target. This
task is similar to the monocular tracking problem. It is necessary to compute target position and velocity in
the cyclopean eye from the position and velocity measurements in left and right image.

[
x
y

]
=

[
− 1

2
F 2(xl+xr)

S(β)2xlxr−F 2C(β)2+FS(β)C(β)(xl−xr)

− 1
2

F 2C(β)(yl+yr)+FS(β)(ylxr−yrxl)
S(β)2xlxr−F 2C(β)2+FS(β)C(β)(xl−xr)

]
(17)



Equation 16 is a system of six non-linear equations. Assume target image coordinates are known in both
left and right camera ((xl, yl) and (xr, yr)). There are five unknowns in 16: target position in the cyclopean
image (x, y) and target Z coordinate in left, right and cyclopean camera referential (zl, zr and z). These five
unknowns can be determined by solving the system of equations. The solution for (x, y) is given in 17.

[
ẋl/r
ẏl/r

]
= ±Kl/rAPpR

t
p(±β)A−1ml/rβ̇ +Kl/rAR

t
p(±β)PtRp(±β)A−1ml/rα̇t

+Kl/rAR
t
p(±β)Rtt(αt)PpRt(αt)Rp(±β)A−1ml/rα̇p ∓ 1

zl/r
Kl/rAR

t
p(±β)Pttα̇t

∓ 1
zl/r

Kl/rAR
t
p(±β)Rtt(αt)PpRt(αt)tα̇p + 1

zl/r
Kl/rAR

t
p(±β)Rtt(αt)R

t
p(αp)Ṁ

(18)
Equation 18 computes the velocity in left and right retina. It is obtained by differentiating equation 15.

The first five terms correspond to velocity induced by camera motion (egomotion). Notice that fourth and
fifth term depend on scene depth because camera performs translational motion. The last term correspond
to the image velocity induced by target motion in space.

[
ẋegol/r
ẏegol/r

]
= −W rot

egol/r



β̇
α̇t
α̇p


+W tra

egol/r

[
α̇t
α̇p

]
(19)

Wtra
egol/r

=
B

zl/r

[
0 (FS(β)± xl/rC(β))C(αt)
0 ±(FS(β) + yl/rC(β)C(αt))

]
(20)

Equation 19 computes the image velocity component due to camera motion. Wrot
egol/r

is a 2x3 weighting

matrix corresponding to egomotion induced by camera rotation motion. Wtra
egol/r

is a 2x2 weighting matrix

that is related with egomotion component due to camera translation (see equation 20). B is the distance
from the camera to neck pan and tilt joints. The camera describes translational motion if B > 0 and α̇p 6= 0.
Whenever B is zero or the neck pan degree of freedom is stopped, the second term of equation 19 is zero
and egomotion is only due to camera rotation. The velocity in image induced by camera translation is
proportional to the ratio B

zl/r
. Usually target distance to system is much larger than baseline length. The

ratio B
zl/r

is nearly zero and the egomotion induced by camera translation can be neglected.

[
ẋegol/r
ẏegol/r

]
≈ F

[
±1 0 C(αt)(1 + B

zl/r
S(β))

0 C(β) ±S(αt)(S(β) + B
zl/r

)

]

β̇
α̇t
α̇p


 (21)

Assuming that target is nearly in the center of image, equation 19 simplifies to equation 21 by making
(xl/r, yl/r) = (0, 0).





[
ẋtgtl
ẏtgtl

]
= 1

zl
KlAR

t
p(β)A−1Xtgt

[
ẋr
ẏr

]
= 1

zr
KrAR

t
p(−β)A−1Xtgt

(22)

Consider (ẋtgt, ẏtgt)
t as being the velocity induced in cyclopean image by target motion in scene. This

velocity vector is (ẋtgt, ẏtgt)
t = 1

zKXtgt, where Xtgt is a 3x1 vector such as Xtgt = ARt
t(αt)R

t
p(αp)Ṁ (see

equation 11). Assume (ẋtgtl , ẏtgtl)
t and (ẋtgtr , ẏtgtr )

t are image velocities induced by target motion in left
and right retina. 22 is system of equations derived from the last term of 18. This system is used to obtain
an analytical solution for (ẋtgt, ẏtgt)

t.

[
ẋtgt
ẏtgt

]
≈
[
ẋtgtl+ẋtgtr

2 cos(β)2

ẏtgtl+ẏtgtr
2 cos(β)

]
(23)

Assuming that target is projected in the center of both retinas, the velocity induced by target motion in
the cyclopean image is given by equation 23.



2.5 Vergence Control

Eye pan is called vergence. Figure 6 exhibits a schematic of vergence control. The vergence point is the
intersection of left and right optical axis. Assuming symmetric vergence this point is always in the cyclopean
Z axis. The system is verged whenever tan(β) = B

z where z is target Z coordinate in the cyclopean reference
frame. This section performs the mathematical study for vergence control.

∆β = arctan(
F cos(β)(xl − xr) + 2 sin(β)xlxr
F (2F cos(β)− sin(β)(xl − xr))

) (24)

Assume the vergence angle is β and ∆β is the correction angle that verges the system in the target
(tan(β +∆β) = B

z ). ∆β is called the vergence error in position and is given by equation 24.

[
ẋl/r
ẏl/r

]
= ± 1

zl/r
Kl/rAPpR

t
p(±β)(zA−1m± t)β̇ +

1

zl/r
Kl/rAR

t
p(±β)A−1(żm+ zṁ) (25)

Equation 25 is derived by differentiating equation 16. It gives the velocity in left and right retina in order
to velocities in the cyclopean eye. The first term corresponds to egomotion induced by vergence degree of
freedom. While neck pan and tilt are used to keep the target aligned with cyclopean Z axis, the goal of
vergence control is to compensate for target motion along the cyclopean optical axis.

ẋl − ẋr = −2F β̇

B
− 2F sin(β)2ż

B
(26)

β̇ =
ẋtgtl − ẋtgtr

2F
(27)

Assume that cyclopean eye is performing perfect tracking ((x, y) = (0, 0) and (ẋ, ẏ) = (0, 0)) and that
target is projected in the center of both retinas (tan(β) = B

z ). Equation 26 is obtained applying these
assumptions to 25. It gives the velocity disparity in X axis that is the sum of an egomotion term and target
velocity along cyclopean Z axis. To achieve perfect tracking this sum must be zero. If ẋtgtl − ẋtgtr is the
disparity due to target motion in scene, equation 27 gives the vergence velocity to achieve perfect tracking.
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