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Abstract. This paper presents an enhancement to the recent frame-
work of histogram aggregation [1], that enables to improve the matching
accuracy while preserving a low computational complexity. The original
algorithm uses a fronto-parallel support window for cost aggregation,
which leads to inaccurate results in the presence of significant surface
slant. We address the problem by considering a pre-defined set of dis-
crete orientation hypotheses for the aggregation window. It is shown that
a single orientation hypothesis in the Disparity Space Image is usually
representative of a large interval of possible 3D slants, and that handling
slant in the disparity space has the advantage of avoiding visibility issues.
We also propose a fast recognition scheme in the Disparity Space Image
volume for selecting the most likely orientation hypothesis for aggrega-
tion. The experiments clearly prove the effectiveness of the approach.

1 Introduction

Dense stereo matching consists in assigning to each pixel in one view the cor-
responding pixel in the other view [2]. This requires using a matching cost for
comparing image pixel locations and quantifying their likelihood of being a cor-
respondence. A particular stereo method can be said to be local or global, de-
pending on the strategy that is used for obtaining the final disparity map [2].
This article focus exclusively in local methods, that aggregate the matching cost
over a support region in the Disparity Space Image (DSI) [3], as a way to enforce
spatially coherence and improve the final depth estimates.

It is well known that the aggregation window must be aligned with the surface
of the pixel being analyzed in order to maximize the matching performance [4–
8]. Their objective is invariably the estimation of the orientation of the 3D plane
that approximates the surface region that is projected in the pixel, or group of
pixels, under analysis. This usually involves the estimation of sub-pixel matches
for each hypothesized planar region. Thus, these algorithms tend to be complex
and time consuming.

This paper proposes a simple but effective approach for increasing the ro-
bustness to surface slant during stereo cost aggregation. Our strategy consists in
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Fig. 1. Overview: (a) The fronto-parallel (FP) aggregation for a pixel (blue cross) is
performed along the discrete disparity plane (red) closest to the true disparity value
(grey). (b) Most stereo methods rely on FP aggregation windows (red), that completely
disregard surface slant (grey). We propose an aggregation scheme that accommodates
surface slant by considering a pre-defined set of possible orientations for the support
window. Slant hypotheses involving sub-pixel disparities are efficiently approximated
by discrete directions of aggregation in the DSI (green). (c) Histogram aggregation
(HA)[1] is more efficient than standard cost aggregation. In this case, the selected
aggregation directions in neighboring pixels are used to estimate the disparity of the
reference pixel. Note that, if a neighboring pixel is assigned with a different aggregation
directions (white), then its contribution will fall in a different bin of the histogram.

avoiding the errors in pixel matching caused by surface slant without having to
explicitly infer the normal orientation of the original 3D surfaces in the scene.
We explore the DSI and propose the discretization of slanted aggregation win-
dows as it is done for disparity vs. 3D depth (Fig. 1). It is demonstrated that
an initial small set of aggregation orientations improves the stereo aggregation
even for surfaces contained in the scene that are only approximated by those ori-
entations. In order to improve the efficiency of the proposed stereo aggregation,
we use a simple and fast recognition scheme for selecting the most appropriate
aggregation orientation α for each pixel-disparity pair (p, d). The histogram ag-
gregation technique [1] is used, which is conceptually different from the standard
cost aggregation in those cases where only one aggregation orientation is consid-
ered for each pixel-disparity pair. In a certain sense, we enhance the histogram
aggregation technique proposed in [1] with slant information, boosting the accu-
racy at the expense of a small computational overhead. The experimental results
in terms of integer pixel disparity accuracy are very close to [8] (highly ranked
in Middleburry), but with several orders of magnitude less computation time.

2 Related work

In recent years, three main research topics concerning cost aggregation were ad-
dressed: (i) handling depth discontinuities [9]; (ii) reducing the computational
complexity [1]; and (iii) handling surface slant [4–8]. The first issue is solved
by the adaptive weight strategy of Yoon and Kweon [9], while the second was
recently address in [1] by eliminating redundant computations. We focus on the
3D slant issue and, to keep computation tractable, on the second by following
similar sampling schemes as [1]. The stereo methods that take the surface slant
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into account can be roughly divided into four distinct categories: (1) the meth-
ods that use fronto-parallel stereo for the initialization e.g. [6]; (2) the methods
whose objective is to assign a 3D plane to each image pixel from a pre-defined
set of plane hypotheses e.g. [4]; (3) approaches that fit 3D planes using image
segmentation e.g. [5]; and (4) the algorithm recently proposed by Bleyer et al.
in [8] that estimates a 3D plane at each pixel onto which the support region is
projected.
Our new stereo aggregation strategy is more closely related to the second group,
however with two conceptual differences: (i) we work in the DSI without the
ambition of correctly estimate the 3D slant. In practical terms, we avoid inter-
polation issues, at the expense of no explicit sub-pixel matching accuracy; and
(ii) we propose the quantization of the 3D plane space, and by doing it in the
DSI, we are able to cover the slant space with less plane samples, as well as to
implicitly handle visibility/impossible configuration issues.

3 Formulation of local stereo using histogram aggregation

Let’s consider the general stereo problem, where the goal is to assign to each
pixel p = (xp, yp) in the left image I a disparity d from a pre-defined set of
discrete values D = [0, ..., D − 1]. This assignment implicitly associates p with
the pixel p′ = (xp − d, yp) in the right image I′. As in [8], we choose as pixel
matching cost the so-called truncated color and gradient differences (TD)

c(p, d) = (1−β) max(τcol − ||Ip−I′p′ ||, 0) + βmax(τgrad − ||∆Ip−∆I′p′ ||, 0),

where ||Ip − I′p′ || corresponds to the L2-distance of the RGB colors of pixels
p and p′, ||∆Ip − ∆I′p′ || is the L2-distance of the gray-value gradients, the
parameter β balances the influence of color and gradient, and τcol and τgrad
serve to truncate the cost in order to improve robustness near discontinuities.

The cost aggregation is defined as a joint histogram voting [1]:

C(p, d) =
∑

q∈N (p)

ω(p,q)c(q, d),

with C being the aggregated DSI, N (p) denoting the pixel neighborhood of p
defined by the size B of the aggregation window, and ω(p,q) corresponding to
the adaptive support weighting function proposed in [9]. This function is defined
as:

ω(p,q) = exp

(
−
√

(Ip − Iq)2

δcol
−
√

(p− q)2

δsp

)
,

with δcol and δsp being constant parameters.
The complexity of histogram-based cost aggregation can be substantially

reduced by applying the following sampling strategies [1]:
1. Selection of disparity hypotheses: The idea is to independently select for

each pixel p a small subset of disparity hypotheses that have better support. This
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is accomplished by using a small square window for filtering the cost c(p, d) along
the disparity dimension, and then choosing the P% local maxima of the obtained
1-D signal. The result is a subset Dp

P = {P% best disparities of p} comprising
the disparities to be further considered in subsequent steps.

2. Spatial Sampling: The image grid is sampled by a factor of S×S that
enables to further reduce the complexity of the stereo aggregation.

Taking into account the sampling strategies, the aggregated cost C can be
re-written as:

CP,S(p, d) =
∑

q∈N (p)

ω(p,q)c(q, d)oP (q, d)sS(q) (1)

where

oP (q, d) =

{
1 if d ∈ Dq

P

0 otherwise
and sS(q) =

{
1 if q%S = 0
0 otherwise

4 Aggregation with different window orientations α

Let’s assume a rectified stereo setup, with a relative camera translation of t =
(b, 0, 0)

T
, and a generic scene point P=(Xp, Yp, Zp)

T
that lies in a surface with

normal n = (nx, ny, nz)
T

. This surface can be locally approximated by a plane
that defines an homography H mapping points p in the left view into points p′

on the right view [10]:

H =
(
I3×3 +

t nT

h

)
=

(
1 + bnx

h b
ny

h bnz

h
02×1 I2×2

)
, (2)

with h = P ·n. If p and p′ are the images of P, then p′ = Hp and the stereo
disparity is

dp = xp − xp′ = −nxb
h
xp −

nyb

h
yp +

nxbxp + nybyp + hdp
h

(3)

with yp=yp′ indicating the image row coordinate. Consider now a generic image
point (x, y) in the neighborhood N (p) that is still the projection of the plane
surface. By applying the homography of Eq.2 comes that the disparity d of this
neighboring point differs from dp by

∆d = d− dp = αx(x− xp) + αy(y − yp) , αx = −nxb
h

, αy = −nyb
h
. (4)

Eq.4 shows that the orientation of the aggregation window in the DSI must be
in accordance with the 3D surface slant. A standard window along a constant
disparity direction cannot account for the variation ∆d in the neighborhood of
the pixel under analysis. The ideal window must be slanted around a vertical axis
by an angle with tangent αx, and a horizontal axis by an angle with tangent αy.
Henceforth, we will parametrize the orientation of the aggregation window by
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α=(αx, αy), with α=(0, 0) being the standard situation of aggregation along a
constant disparity. Remark that windows in the DSI with the same orientation
correspond to different 3D surface slants, depending on the coordinates of P,
the focal length f , and the baseline b.

Most existing stereo methods that handle surface slant explicitly estimate a
3D plane for each pixel onto which the neighborhood is projected (see Sec. 2).
In order to accomplish this, they need to analyze for each 3D point P being
considered, if the hypothesized surface is visible in both cameras. It can be shown
that this visibility issue is implicitly solved for each pair (p, d) in the DSI using
the parameterization α, and by limiting αx and αy to the ranges αx ∈ [−1, 1[ and
αy ∈ [−1, 1], respectively. Moreover, and since our objective is not to accurately
estimate the surface slant for each pixel, we consider horizontal and vertical
surface slants separately. Following [4], by horizontal slant we mean the surfaces
on which the disparity changes as we move along the x-axis, which is related
to the aggregation orientation αx. Similarly, the disparity on a vertical slanted
surface varies as we move along the y-axis, corresponding to the orientation αy.

The DSI is inherently a discrete 3D space so that considering continuous
window orientations in the DSI requires the interpolation of the cost volume.
This provides depth estimations at a sub-pixel accuracy level, however with the
drawback of increased computational cost. We avoid the interpolation issues and
propose a simple scheme for voxelizing slanted windows in the DSI, where the
incremental disparity between successive pixels is given by

∆d = (int)(α · (p− q)
T

). (5)

We assume the working ranges αx ∈ [−1, 1[ and αy ∈ [−1, 1] and consider vertical
and horizontal surface slants separately. Following this, it can be verified that
using the voxelization proposed in Eq.5, there are B−1 distinguishable horizontal
and B distinguishable vertical aggregation patterns for a window of size B.

5 Histogram aggregation with multi-slant hypotheses

This section describes a new scheme for cost histogram aggregation that takes
into account the surface slant. This is achieved by considering a pre-defined set
of N window orientations in the DSI. In addition, we propose a simple recog-
nition approach for selecting the best aggregation direction for each pixel, and
discuss the differences between using standard and histogram aggregations in
conjunction with orientation selection.

5.1 Cost aggregation in the (p, d, α) domain

In order to accommodate surface slant in the framework of histogram aggrega-
tion, we reformulate the function of Eq. 1 to consider an additional dimension
α=(αx, αy) that accounts for the orientation of the support window:

Cr,P,S(p, d,α) =
∑

q∈N (p)

ω(p,q)c(q, d+∆d)hr,P (q, d+∆d,α)sS(q), (6)
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with ∆d, that depends on α, being given in Eq. 5. The look-up table oP for the
disparity selection is now replaced by hr,P that enables selecting the aggregation
direction in addition to disparity selection. Remark that the histogram voting is
only performed if (d+∆d)∈D.

5.2 Sampling the space of the aggregation orientations α

We propose a simple and fast recognition approach for an efficient implemen-
tation of the histogram aggregation formulated in Eq. 6. The objective is to
select for each pixel p and disparity d, the best aggregation orientation among
the hypotheses in the configuration AN under consideration. The recognition
is accomplished by correlating the cost c(p, d) with the slanted window of size
R defined by the α hypothesis. It is important to distinguish between the size
B of the aggregation window and the size R of the recognition window. This
operation is carried whenever the parameter r is set (Eq.6) and is formalized by
the following scoring function

ρ(p, d,α) =

∑
q∈NR(p)

c(q, d+α · (p− q)
T

)

∑
q∈NR(p)

(
d+α · (p− q)

T
)
∈ D

, (7)

For each pixel p and disparity d, the orientation α with highest score defines
the set Ap,d

r = {best α for (p, d)}. In the case the parameter r is zero, then
Ap,d
r = AN and all orientations are considered for the aggregation. The new

look-up table h is defined as:

hr,P (p, d,α) =

{
1 if α ∈ Ap,d

r ∧ d ∈ Dp
P .

0 otherwise
(8)

Remark that the selection of P percentage of the most likely disparities d for
each pixel p (Dp

P ) only makes sense in conjunction with orientation selection
(r = 1). In this case, the scoring function ρ is the new metric for choosing the
best disparities.

5.3 Standard aggregation vs. Histogram aggregation for r=1

There is a difference between standard [9] and histogram aggregation [1] when
the aggregation orientation is pre-selected (r= 1). As shown in Fig. 2, for r= 0
both approaches obtain the same aggregated cost C(p, d,α), corresponding to
the sum of all neighboring costs along the N orientations α. However, if the
recognition parameter is set to r = 1, then for standard aggregation the cost
C(p, d) is obtained by aggregating the neighborhood of p along the assigned
orientation α for (p, d). In histogram aggregation, each neighbor votes along the
orientation to which it was assigned. This means that the N bins C(p, d,α) of
(p, d) are voted by the neighboring pixels for which the aggregation direction α
intersects (p, d).
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(a) r=0 (b) r=1 Standard (c) r=1 Histogram

Fig. 2. Differences between standard and histogram aggregation using 3 aggregation
orientations (magenta, blue and green). We show two examples for two different refer-
ence points p1 and p2 (black). (b,c) Blue slant assigned to p1 and magenta to p2.

Table 1. We use 4 aggregation configurations.

FP 3 Vert. 5 Vert.+2 Hor. 7 Vert.+4 Hor.
A1 A3(R = 5) A7(R = 5) A11(R = 11)

αx 0 0 0 0 0 0 0 0 0 −.5 .5 0 0 0 0 0 0 0 −.5 −.2 .2 .5
αy 0 −1 0 1 −1 −.5 0 .5 1 0 0 −1 −.5 −.2 0 .2 .5 1 0 0 0 0

6 Experimental Results

In this section, we will describe the methodology for the experimental evaluation,
study the performance of the proposed stereo aggregation using different sets of
aggregation orientations AN , and compare the proposed method against one
state-of-art method.

Following the standard evaluation, the disparity maps are scored by count-
ing the number of nonocc (pixels in non-occluded regions), all (all pixels), and
disc (visible pixels near occluded regions) pixels that differ in more than one
pixel from the ground truth. The experiments are performed on the Middle-
burry datasets [2, 11, 12]. Concerning the possible orientations for aggregation,
we only assume vertical or horizontal slants for the windows. The Tab. 1 specifies
the configurations AN to be considered, indicating the α=(αx, αy) values that
define the orientations of the N window hypotheses. We will show that in gen-
eral our small discrete set of orientations α will be able to approximate different
continuous 3D slants in the scene. The experiments will compare the results
for the 4 configurations AN of Tab. 1 in an attempt to assess the influence of
the number of considered direction hypotheses for aggregation. Please note that
for A3 and A7 a window of R = 5 is sufficient for the recognition step; while
for A11 we must use R= 11 to discriminate between the different aggregation
orientations.

6.1 Comparison of different aggregation configurations AN

We show in Tab. 2 the results of the disparity labeling for nonocc pixels in 4
stereo pairs. As expected from [1], the selection of the best disparities improves
the disparity estimation in most cases. The authors of [1] justify this as unneces-
sary disparity candidates contaminate the aggregation process. We reinforce this
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Table 2. Comparison of 4 configurations AN (Tab.1). No spatial sampling is applied
(S=1). The under-script values correspond to conventional aggregation (Sec.5.3).

Stereo Pair Teddy Cones Wood1
P 0.1 1 0.1 1 0.1 1
r 1 1 0 1 1 0 1 1 0

F
P A1 5.29 6.04 2.95 3.4 8.18 10.6

S
L
A
N
T A3 2.84 3.054.21 3.32 2.71 2.982.94 3.48 4.19 12.63.52 7.73

A7 4.93 8.416.03 3.88 2.93 3.744.02 4.09 6 18.73.60 7.54
A11 5.89 13.34.87 3.78 3.4 9.853.15 3.09 1.78 4.431.89 2.06
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Fig. 3. Disparity selection before histogram aggregation decreases the errors in am-
biguous regions and near discontinuities. (a) Top: I with aggregation window (black)
centered in the pixel p under analysis (green). Bottom: I′ with matching candidates
(blue); green and red points are respectively correct and false matches. (b) Aggregated
DSI results for pixel p. The disparity selection (bottom) avoids the existence of multi-
ple maxima (top) that create ambiguity. (c) Adaptive aggregation for the neighboring
pixels of p [9]. Green corresponds to the correct disparity, while red corresponds to a
false match. If no disparity selection is used (top), the two cost aggregation results will
be similar because of the low texture of the roof in the case of the correct disparity.
The disparity selection (bottom) removes for the false match non-discriminative con-
tributions caused by the textured wall in background. (d) The correct disparity for p
is voted more times in Dq

P .

observation using Fig. 3. The pixels in ambiguous regions vote in the aggrega-
tion histogram in a chaotic manner. However, the main point is that even in
ambiguous image regions the correct disparity for p appears more times as local
maxima in the neighborhood Np than other disparities, so that the disparity
selection step leads to an improved disparity voting.

Effect of considering various aggregation orientations (r= 0) Consid-
ering various aggregation orientations improves the accuracy in the majority of
the cases when compared to fronto-parallel aggregation. This does not happen
for one case (A7) in the cones dataset, however this scene does not contain any
slanted planes, and more aggregation orientations tend to amplify the chaotic
voting referred previously.
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Table 3. Evaluation in Middleburry. We set (P =0.1, r=1).

Algorithm Rank
Tsukuba Venus Teddy Cones Runtime

nonocc all disc nonocc all disc nonocc all disc nonocc all disc (Tsukuba)
PatchMatch[8] 12 2.0966 2.3352 9.3163 0.2122 0.3918 2.6231 2.991 8.168 9.622 2.475 7.89 7.117 ≈ 60s

S
=
1 HistAggr+TD 25 2.4472 2.6956 9.1762 0.2530 0.3416 3.2438 5.2916 10.722 1416 2.9524 8.5924 8.2425 16.9s

HistAggr+TD+Slant 17 2.3870 2.6256 9.3364 0.2632 0.3617 3.3241 2.841 8.199 8.511 2.7113 8.1616 7.5213 18s

S
=
3 HistAggr+TD 30 2.2770 2.5255 9.1462 0.2428 0.3113 2.9235 5.9019 11.631 15.422 3.1629 8.8130 8.7334 1.7s

HistAggr+TD+Slant 22 2.25682.50559.77680.29340.37173.30413.443 8.82139.774 2.90208.40207.9720 2s

Effect of selecting one slant hypothesis (r = 1) There are two different
effects that must be accounted (Tab. 2): (i) the effectiveness of the recognition
scheme in selecting the most suitable orientation hypothesis α, and (ii) the
effect of the histogram aggregation. It can be observed that the results tend to
be significantly worse than for (r = 0, P = 1). This is not because of the slant
selection process, but rather because of the fact that histogram aggregation is not
effective without disparity sampling. We show in under-script the results when
there is aggregation orientation selection, but the aggregation is performed in
the standard manner (see Sec. 5.3). The accuracy degrades slightly but doubts
concerning the effectivness of the recognition can be discarded. Finally, and as
can be seen in column (r= 0, P = 0.1), the histogram aggregation is effective if
we use both disparity sampling and slant selection.

There are two take home messages considering histogram aggregation tak-
ing into account surface slant: (1) The first is that slant selection in histogram
aggregation works always well if the surface slants contained in the scene are
well approximated by the hypothesis considered in AN . Otherwise, the decision
process can assign different values α to points on the same 3D surface that
are equally well approximated by the discrete aggregation directions. This cre-
ates contradictory contributions in the histogram voting for neighboring pixels,
enhancing the ambiguity (Fig. 3); and (2) The second observation is that the
previous effect can be compensated by pursuing both slant selection and dis-
parity sampling. The disparity sampling discards the contributions of neighbors
of (x, d) for which the decision of slant can be equally fitted by more than one
hypothesis, so that their votes are diluted in the histogram voting.

6.2 Evaluation in Middleburry

We compare the proposed aggregation with PatchMatch[8] as being one of the
most accurate local algorithms that take into account the surface slant. The re-
sults are presented in Tab. 3. HistAggr+TD corresponds to the fronto-parallel
aggregation (A1), whereas HistAggr +TD+Slant takes into account 3 aggre-
gation orientations (A3). Our algorithm combines the advantages of both, the
accuracy of PatchMatch by considering surface slant hypotheses, and the speed
of the histogram aggregation technique. We dramatically improve with respect
to fronto-parallel HistAggreg+TD at the expense of a computational overhead
of 15−20%. We take the first position in the ranking for the Teddy stereo pair,
which is more relevant since it is the only one containing considerable slant.
This is achieved with less than 1/3 of the runtime of PatchMatch. The spatial
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sampling S = 3 is just slightly more inaccurate but with a speedup of 30×. As
finally remark, we propose to use HistAggr+TD+Slant with S=3, being the
best compromise between accuracy and runtime.

7 Conclusions

This paper presented a new histogram aggregation framework that accounts for
surface slant. The strategy consisted in choosing the most suitable aggregation
direction within a pre-defined set of discrete hypotheses. The experimental re-
sults were highly ranked in the Middleburry benchmark. The approach is able
to combine high matching accuracy with small computational overhead when
compared to [1]. On the other hand, we converge to the accuracy of PatchMatch
[8], but with much less computation time.
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