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Abstract

Estimating the amount and center of distortion from lines

in the scene has been addressed in the literature by the so-

called “plumb-line” approach. In this paper we propose a

new geometric method to estimate not only the distortion

parameters but the entire camera calibration (up to an “an-

gular” scale factor) using a minimum of 3 lines. We pro-

pose a new framework for the unsupervised simultaneous

detection of natural image of lines and camera parameters

estimation, enabling a robust calibration from a single im-

age. Comparative experiments with existing automatic ap-

proaches for the distortion estimation and with ground truth

data are presented.

1. Introduction

We investigate the problem of fully calibrating an im-

age with significant distortion without requiring any type of

manual supervision. A solution for automatic, single frame

calibration is specially relevant in the case of images mined

from the internet, for which knowing the camera parame-

ters can be useful for multiple tasks. Possible applications

include the distortion correction via image warping for vi-

sualization purposes [20], the normalization of images for

subsequent use in content retrieval frameworks [19], the es-

timation of camera rotation by aligning vanishing directions

with a manhattan world scene [6], or the inference of 3D

metric information from the image [22].

The article considers the case of cameras with distortion

that can be described by the 1-parameter division model

(DM) [7, 11], and assumes that the imaged scene has a rea-

sonable number of straight lines. We propose for the first

time a calibration algorithm that, given the image of 3 lines,

it estimates the distortion, principal point, aspect ratio, and

skew. Such result is not surprising if we consider that the

division model has obvious resemblances with the stere-

ographic projection used to describe the para-catadioptric

sensor [3], and that para-catadioptric cameras can be fully
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Figure 1: Proposed unsupervised calibration result.

calibrated from a minimum of 3 line images [4]. Neverthe-

less, and to the best of our knowledge, the possibility of cali-

brating the intrinsics of dioptric camera with distortion from

3 lines has never been reported. It is also shown that there

are some differences with respect to the para-catadioptric

case, namely the possibility of recovering aspect-ratio and

skew from a single line projection, and the fact that the dis-

tortion can only be computed in pixels, being proved that

line information is insufficient to decouple the focal length

parameter from the distortion parameter in mm. Such de-

coupling requires additional information that is often avail-

able (e.g. the EXIF tag, the nominal field-of-view) and only

knowing the distortion in pixels still enables accurate dis-

tortion compensation with the focal length being chosen as

a function of the desired resolution for the output perspec-

tive [20].

The main contribution of the paper is a processing

pipeline that receives as input a set of image contours, se-

lects the ones that are likely to be projections of lines, and

outputs both the detected lines and the camera calibration

parameters (see Fig. 1). While standard ”plumb-line” cal-

ibration requires user intervention for selecting the image

edges that are projection of lines, our method carries this

operation in a fully automatic manner. The line contours

are detected in the clutter by evaluating their geometric con-

sistency with putative calibrations. This leads to a complex



problem of multi-model fitting that is difficult to solve in

practice. We start by showing that, if the camera is cali-

brated, then the line detection can be conveniently casted as

an Uncapacited Facility Location (UFL) problem [17] that

enables correct selection and clustering of contours. For the

uncalibrated case we use contour triplets to establish differ-

ent calibration hypothesis that give raise to different UFL

instances. These multiple (UFL) instances can be combined

in a large Hierarchical Facility Location (HFL) [12] prob-

lem for whose solution is the solution of the UFL instance

with lowest energy. This provides an efficient, robust man-

ner of simultaneously detecting the line contours and find-

ing the camera calibration.

The approach is validated through extensive experiments

using real images that prove the feasibility of unsupervised

”plumb-line” calibration. It is important to mention that, al-

though the algorithm has been originally designed for han-

dling fully uncalibrated images, we verify that in practice

weak assumptions about the camera aspect ratio and skew

dramatically improve the stability and robustness of results.

The reason for this is that the detected arc contours are usu-

ally small and, under strong occlusion, it is difficult to ob-

tain plausible conic estimation [4] and, consequently, plau-

sible calibration hypothesis to be used in the (UFL)-(HFL)

framework. Nevertheless, this barely limits the usefulness

of the algorithm because the assumption of zero skew and

square pixels is verified by the vast majority of the images

available in the internet.

1.1. Related work

The geometric calibration of cameras with distortion is

a well-studied topic, with several methods and approaches

being described in the literature [22]. However, none of

these solutions is well suited for the automatic calibration

of images mined from the internet. Auto-calibration tech-

niques rely in point correspondences across views for de-

termining both motion and camera parameters [5,16], but it

does not apply to our case where we have in general a single

frame. Barreto et al. showed in [1] that it is possible to fully

calibrate a camera with distortion using a single image of a

chessboard pattern. Since we are addressing the calibration

of images of natural scenes, this approach is also no solu-

tion for our problem. Very recently, Zhang et al. presented

a technique for calibrating a camera using one or more im-

ages of a pattern that is unknown but sufficiently structured

to be considered a low rank texture matrix [25]. Given a

single image, the algorithm enables to recover the distor-

tion parameters and the principal point whenever the scene

has two patterns orthogonal to each other. This requirement

considerably limits the number of cases where the camera

parameters can be recovered. Moreover the approach re-

quires the user to roughly indicate the localization of the

patterns which precludes fully automatic applications.

Contrary to what happens with conventional perspective

cameras, in the case of cameras with distortion it is possi-

ble to recover calibration information from the projection

of 3D lines in random position [22]. Since lines are fea-

tures that often appear in natural images, with special rel-

evance in the case of man-made environments, line-based

calibration is an appealing proposition. The first contribu-

tions in camera calibration using the so-called “plumb-line”

constraint go back to the 70’s when Brown suggested to

model the distortion by a polynomial and estimate its pa-

rameters by straightening up the lines in the image [8]. Lat-

ter on, Brauer-Burchardt et al. [7] and Fitzgibbon [11] si-

multaneously proposed to describe the image distortion by a

1-parameter rational function. The geometry of line projec-

tion considering the DM was investigated by Barreto in [3].

He concluded that, similarly to para-catadioptric cameras,

the lines in 3D are projected into a family of conic curves

that intersect in two points and satisfy an harmonic con-

jugate relation with two other points [4]. He also showed

that the conic where a line is projected has only two inde-

pendent degrees-of-freedom (DOF) and that, if the center is

known, then it is possible to estimate and correct the im-

age distortion using a single line. More recently Wang. et

al. proposed an algorithm for computing both the distor-

tion parameter and the principal point from an image of 3

lines [24] using an algebraic interpretation of the division

model. In all these works the user is required to manually

select the image contours corresponding to the projection

of lines. Very recently Bukhari et al. [9] suggested an algo-

rithm for automatically detecting lines and accomplishing

the calibration following the methods of [24]. We advance

the state-of-the-art in “plumb-line” calibration by showing

that 3 lines enable to also recover the aspect ratio and skew

and, more importantly, by providing an algorithm for unsu-

pervised calibration that largely outperforms [9] in terms of

accuracy, robustness, and computational efficiency.

The structure of the paper is as follows: section 2 in-

troduces some background notions, section 3 addresses the

problem of camera calibration from 3 lines and section 4

addresses the problem of line extraction from calibrated im-

ages. In section 5 we present the unsupervised calibration

algorithm and section 6 shows the experimental results. Fi-

nally, conclusions are drawn in section 7.

1.2. Notation

Vectors and vector functions are represented by bold

symbols, e.g x, F(x), scalars and scalar functions are in-

dicated by plain letters, e.g. r, f(x), g(r), matrices and

image signals are respectively denoted by capital letters in

sans serif and typewriter fonts, e.g. the matrix M and the

image I. Points, lines and conics are represented in ho-

mogeneous coordinates. We do not distinguish between a

projective transformation and the matrix representing it.



2. Background concepts

Throughout this article we will model the camera distor-

tion using the so called division model [7,11], where ξ is the

negative parameter that quantifies the amount of distortion.

h() is the radial distortion function that maps undistorted

points u in P
2 into distorted points d in P

2:

d ∼ h(u) ∼ ( 2u1 2u2 u3 +
√

u2
3 − 4ξ(u2

1 + u2
2) )T

(1)

Let n ∼ ( n1 n2 n3 ) be the projection of a 3D line

according to the conventional pinhole model. The distortion

function 1 transforms a line n into the conic Ω given by [3]:

Ω =





ξn3 0 n1

2
0 ξn3

n2

2
n1

2
n2

2 N3



 . (2)

It has been shown in [3] that Ω is the distorted image of

a world line iff it passes through the circular points I and

J, and points r+ and r− are harmonic conjugates [21] with

respect to Ω:







ITΩI = 0 with I = ( 1 i 0 )T

JTΩJ = 0 with J = ( 1 −i 0 )T

rT+Ωr− = 0 with r± = ( 1 0 ±
√

(ξ)) )T

(3)

For convenience we will use, whenever needed, lifted

representations of points and conics:

qt





ω1
ω2

2
ω4

2
ω2

2 ω3
ω5

2
ω4

2
ω5

2 ω6





︸ ︷︷ ︸

Ω

q = 0 ⇔

⇔
(
ω1 ω2 ω3 ω4 ω5 ω6

)

︸ ︷︷ ︸

ω
T

q̂T = 0 (4)

where q̂ denotes the lifted coordinates of q according to a

second order Veronese map [3].

3. Calibration from 3 lines

The division model of equation 1 is usually studied as

a bijective mapping in image coordinates. In this work we

assume the mapping to be before the intrinsics. In this case,

a point Q in 3D is projected onto a point q in the image by:

q ∼ Kh(PQ),

with K being the matrix of intrinsic parameters of the

camera:

K =





af sf cx
0 a−1f cy
0 0 1



 ,

P being the standard 3 × 6 projection matrix [14], and

h() being the radial distortion function with ξ being now

expressed in millimetres instead of pixels.

3.1. Condition for a conic to be the image of a line

The conic Ω where a line is imaged is now given by

transforming the result of equation 2 by the intrinsic param-

eters K, as shown in Fig. 2a. Since projective transforma-

tions preserve incidence and cross-ratio relations, the conic

Ω must intersect the line at infinity in points I′ ∼ KI and

J′ ∼ KJ, and must verify an harmonic relation with respect

to points r′± ∼ Kr±. Therefore, a conic is the image of a

line iff it verifies Φω = 0, with ω
T being its representation

in P
5 and Φ being the 3× 6 matrix:

Φ =





(as− ia2)2 as− ia 1 0 0 0
(as+ ia2)2 as+ ia 1 0 0 0

c2x − a2

η
cxcy c2y cx cy 1





︸ ︷︷ ︸

Λ

(5)

with η =
ξ

f2
.

The two first rows are the lifted representation of I′ and

J′ respectively, and the last row is the joint lifted represen-

tation of r+ and r− [2].

If the calibration parameters of the camera are known,

then the conic Ω can be estimated from N ≥ 2 image points

using constrained least squares [13], with equation 5 giving

the set of 3 linear constraints.

3.2. Minimal solution for the calibration

From equation 5, we observe that the images of lines lie

in a 2D subspace S of P5 that encodes the calibration. We

now show how to recover the calibration parameters from 3

line images ω1, ω2 and ω3 (Fig. 2b). If the projection of a

3D line is correctly estimated in the image plane, intersect-

ing it with the line at infinity defines points I′ and J′, whose

coordinates encode a and s as shown in Fig.2a. Solving

with respect to these parameters it can be shown that:

a =

√

ω3

ω1
−

1

4

ω2
2

ω2
1

and s = −
ω2

ω1
a−1, (6)

where ωi are the entries of ω. We can therefore retrieve a

and s from the image of a single line.

The principal point (cx, cy) and distortion parameter are

encoded in the third orthogonal vector to the subspace of
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Figure 2: Intersecting projections of 3D lines with the line at infinity.

lines, S. Given tree line images, we can determine this sub-

space and compute Λ by parametrizing the null space of the

lines as follows:

N(ω1,ω2,ω3) = K1V1 +K2V2 +K3V3 (7)

with Φ ∈ N(ω1,ω2,ω3). Considering the third row of Phi,

Λ, the following conditions must hold:







Λ6 = 1

Λ2 − Λ5Λ4 = 0

Λ2
5 − Λ3 = 0

After solving the first constraint in order to K3 and replac-

ing it in the other two, the parameters K1 and K2 can be

computed by intersecting the two conic curves given by the

2nd and 3rd constraints (system of two second order homo-

geneous polynomials). From the 4 possible solutions we

choose the one with physical meaning.

In summary, we have shown that tree world lines are suf-

ficient to calibrate a camera. However, two important re-

marks are done:

1. We are only able to determine the ratio η between ξ

and f2, that can be understood as the distortion pa-

rameter expressed in pixels rather than in mm. Nev-

ertheless this coupled parameter enables to rectify the

image distortion (as shown in the experiments).

2. We can verify that, considering a fourth line projec-

tion ω4, puts no further constraints to the calibration

problem. The conic curve must satisfy two linear con-

straints since it must pass by points I′ and J′, and must

belong to the subspace orthogonal to Λ. This means

that only 2 of the 5 DOF of the conic curve are re-

ally independent and they refer to the orientation of the

plane containing the original line in 3D (see [3]). Thus,

we conclude that line images ωi, with i > 3, bring

no additional information about the camera calibration

and it is impossible to decouple the focal length f from

the distortion parameter ξ using exclusively line fea-

tures.

The calibration solution demonstrated above enables to

determine the back-projection directions up to an angular

multiplicative factor. Determining this multiplicative factor

requires knowing, directly or indirectly, the absolute angle

between two back-projection rays (e.g. know ’a priori’ the

field-of-view (FOV) of the camera or extract focal distance

from EXIF tag).

3.3. Calibration algorithm

The previous section demonstrates how to calibrate a

camera from a minimum of 3 imaged lines. In practice, for

each conic, we are only able to extract points belonging to

a small arc of the conic. The joint effect of noise and strong

partial occlusion makes the estimation of the conic very un-

certain [2]. In Fig.2c we can see that the arrangement of the

initial conics Ω
(0)
i does not comply with the constrains de-

rived in section 3.1. In this case the conics do not intersect

the line at infinity in two unique points and the harmonic

relations with respect to points r′ and t′ are not consistent.

Table 1 summarizes the unsupervised calibration algo-

rithm. We start by estimating the likely location of the

conics intersection with the line at infinity (steps 1 to 3)

and then the conics a re-estimated from the correspond-

ing image points enforcing the incidence with points I′ and

J′ (step 4). The principal point (cx, cy) and η are esti-

mated by computing the vector Λ lying in the null space

N(ω1,ω2,ω3) (steps 5 to 6).

The calibration estimation of steps 1 to 6 is sub-optimal

and is used as initialization for a final iterative optimization

step. From the analytical form of Ω (see Fig:2a), and af-

ter some algebraic manipulation, we derive the following

equation:
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ω
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0 0 ηa−2

0 0 −2ηa−1s

0 0 η(a2 + s2)
a−1 0 −2ηcxa

−1

−s a 2η(cxs+ cya)
−cx −cy 1 + η(c2x + c2y)











︸ ︷︷ ︸

G

.





n1

n2

n3





︸ ︷︷ ︸

m

(8)

with G being a 6 × 3 matrix that encodes the calibration

parameters and m being the 3 × 1 vector encoding the ori-

entation of the plane that contains the line [3].

Given the conics ωi and the matrix G, computed with

the calibration initialization, the corresponding vector mi is

determined linearly. Let q
(i)
j be contour point j = 1 · · ·Ni

belonging to the ith conic wi. The bundle adjustment of the

calibration parameters is carried by minimizing the function

of equation 9:

f = min
a,s,cx,cy,η,mi

3∑

i=1

Ni∑

j=0

(

mT
i G

T q̂
(i)
j

)2

, (9)

Note that, if there is no prior knowledge about a and

s, it is possible to estimate I′ and J′ from steps 1 to 3 in

Table 1. However, if there is some prior knowledge such

that reasonable assumptions can be made about a and s (e.g.

the camera is skewless and has square pixels), then the 3

first steps can be skipped and the calibration carried trough

4 to 7.

4. Line extraction from a calibrated image

Let us assume a calibrated image with distortion for

which we want to detect projections of world straight lines.

We start by applying a standard edge detector [10], followed

by a connected components algorithm in order to obtain

several contours ei that are line projection candidates. We

aim at identifying the contours ei that support conics ωj ly-

ing on the 2D subspace S ∈ P
5 defined by the calibration

parameters. This can be seen as a multi-model fitting prob-

lem where the models are the conics ωj consistent with the

calibration and we want to assign to each contour ei a model

(or discard the contour in case it does not fit any model).

Following this, we formulate the detection of lines as an op-

timal labelling problem that is cast as an UFL instance [17].

4.1. Uncapacited Facility Location (UFL) problem

Suppose that we need to open a set of facilities ω0
j to

serve N customers ei∈E whose locations are known. Con-

sider a set V0 comprising M possible facility locations, the

cost c0ij for assigning the facility ω
0
j to the customer ei

and the cost v0j for opening the particular facility ω
0
j . The

Table 1: Unsupervised calibration algorithm. Steps 1 to 3

apply when there is no prior knowledge of the camera aspect

ratio and skew angle.

1. Given 3 contours ei=1···3, estimate the conics

Ω
(0)
i=1···3 using a standard conic fitting algorithm.

For our experiments we use Taubin’s method [23]

due to its better performance with small arcs [2].

2. Intersect each conic Ω
(0)
i with the line at infinity

and obtain I′i and J′ estimates [2].

3. Estimate the pair of complex conjugate points I′,

J′ from the pairs I′i, I
′
i by averaging the real and

imaginary parts.

4. (Re)-estimate the conics using constrained least

squares [13], forcing them to intersect I′ and J′.

5. Given the conics Ωi=1···3 compute a basis for the

null space N and determine the Λ vector by solv-

ing equation 7.

6. Extract the principal point (cx, cy) and η from

vector Λ.

7. Refine the calibration result by minimizing equa-

tion 8 using iterative optimization (equation 9).

goal of the UFL problem is to select a subset of V0 such

that each customer is served by one facility and the sum of

the customer-facility costs plus the sum of facility opening

costs is minimized. This leads to an integer programming

problem that is usually formulated using unary indicator

variables y0j and binary indicator variables x0
ij , and whose

objective is to find the vector x0 = {x0
11...x

0
ij ...x

0
NM} such

that :

min
x0

N∑

i=1

M∑

j=1

c0ij x
0
ij +

M∑

j=1

v0j y
0
j (10)

subject to







x0
ij , y

0
j ∈ {0, 1}, ∀i, j

M∑

j=1

x0
ij = 1, ∀i

y0j ≥ x0
ij , ∀i, j

(11)

The second constraint in equation 11 ensures that each cus-

tomer is assigned to one facility, while the last constraint

guarantees that each customer is only served by open facil-

ities. For solving the UFL problem, we use the local mes-

sage passing approach proposed by Lazic et al [17, 18].



4.2. Line detection as a UFL problem

Let ei ∈ E with i = 1...N be the ith connected compo-

nent in the image. The objective is to assign to each segment

ei an image conic ω0
j ∈ V0 using as few unique models as

possible. Consider that the segments ei are the customers

and the putative conics ω0
j are the facilities. Let the cost c0ij

be the root mean square geometric distance between points

of ei and conic ω0
j . Let v0j be a constant cost for adding

ω0
j in the final models assignment. The goal is to select a

subset of conics in V0 such that sum of the consistency mea-

sures c0ij and the costs v0
j is minimized, which corresponds

to the minimization of Eq.10. Fig. 3 shows the result of

the UFL formulation applied to an image with considerable

amount of clutter and where straight lines projections are

often separated. It can be seen that the line extraction al-

gorithm successfully identifies the correct lines and clusters

disconnected segments in the same line.

5. Unsupervised Plumb-line calibration using

RANSAC-UFL

In the previous section we presented an algorithm that,

given the calibration, detects and estimates distorted world

lines projections. This section considers the unsupervised

calibration of the camera, which consists in simultaneously

determining a suitable set of calibration parameters along

with the corresponding world line projections in the image.

This problem can be seen as a HFL instance.

5.1. Hierarchical Facility Location (HFL) problem

Consider that the facilities ω0
j described previously need

to be stocked by additional storage facilities Γ1
k. Consider

a set of M facility locations V0 and L storage facilities V1.

In addition to the costs v0j and c0ij described in the previous

section, we now add the cost v1j for opening the storage

facility Γ1
k, and the cost c1jk associated with the facility Γ1

k

supplying the facility ω0
j . The goal of this two layer HFL

problem is to find the vector x = {x0,x1} that minimizes

the following function:

min
x

N∑

i=1

ML∑

j=1

c0ijx
0
ij+

ML∑

j=1

L∑

k=1

c1jkx
1
jk+

ML∑

j=1

f0
j y

0
j+

L∑

k=1

f1
ky

1
k

s.t.:







x0
ij , x

1
jk, y

0
j , y

1
k ∈ {0, 1}

M∑

j=1

x0
ij = 1, ∀i

∧ L∑

k=1

x1
jk = y0j , ∀j

y0j ≥ x0
ij , ∀i, j

∧
y1k ≥ x1

jk, ∀j,k

The additional restrictions compared to Eq. 11 are that if a

facility ω0
j is closed in layer 0, then ω0

j will not need to be

stocked by a storage facility Γ1
j , whereas if a facility ω0

j is

open, then it must be stocked by a facility in layer 1.

Figure 3: UFL for finding lines according to calibration.

Figure 4: HFL formulation for the unsupervised calibration.

Γ1
k are calibration hypothesis and ω0

j are conics estimated

from segments ei constrained by the associated calibration.

The dotted lines indicates infinite costs between nodes.

5.2. Plumbline calibration as a HFL problem

Given a set of connected components ei ∈ E , a set of

image conics ω0
j ∈ V0, and a set of calibration hypotheses

Γ1
k ∈ V1, the objective is to assign an image conic to each

segment ei, minimizing the number of conics as well as the

number of calibration hypotheses. This problem is cast as

a HFL instance with two different layers (Fig.4). In addi-

tion to the costs c0ij and v0j described in Sec. 4, we add a

new penalization v1k for every Γ1
k contained in the solution.

Since only one calibration Γ1
k is desirable, the penalization

v1k should be very high.

Calibration hypotheses Γ1
k are generated from segment

ei triplets using the method described in Table 1. For each

generated Γ1
k we compute the M conics ω0

j that are con-

sistent with the calibration Γ1
k and minimize the geometric

distance of ei to ω0
j (the method described in section 3.1),

with:

j ∈ {...,M(k−1)+1, ..., kM
︸ ︷︷ ︸

j∈jk

, ...}.

where jk contains the indices of the conics that were gener-

ated from a particular calibration Γ1
k. Our HFL formulation

retrieves a single calibration by setting the connection costs

c1jk between ω
0
j and Γ1

k as

c1jk =

{
0 if j ∈ jk
∞ otherwise

5.3. RANSACUFL

The high combinatorial nature of calibration models and

line segments, along with the fact that we aim at jointly

detecting+clustering the contours which are projection of



lines and finding the calibration parameters, motivate the

use of a HFL approach over other multi-model fitting ap-

proaches [15]. Being formulated as a HFL problem, the

unsupervised calibration algorithm can be computationally

intensive if the number of segments ei and/or the number of

calibration hypothesis Γk is high. We show that our HFL

problem can be efficiently solved as a minimization over

a calibration dependent function fΓ1

k
(x0), which in turn is

the result of solving the UFL problem (please refer to the

supplementary material for details):

fΓ1

k
(x0) = min

x0

N∑

i=1

∑

j∈jk

c0ijx
0
ij +

∑

j∈jk

f0
j y

0
j + f1

k (12)

subject to the constraints in Eq. 11. Following this, we

propose a RANSAC-based approach for unsupervised cal-

ibration: the RANSAC-UFL. As the name suggests, this

framework consists in subdividing the general HFL problem

into various UFL problems, therefore greatly reducing the

computational cost without changing the optimality bounds.

The RANSAC-UFL randomly samples triplets of connected

components, generating calibration hypothesis Γ1
k. Then,

each Γ1
k is evaluated separately using Eq. 12. The calibra-

tion with the lowest UFL energy fΓ1

k
(x0) is the output of

the unsupervised calibration.

6. Experimental results

To evaluate our unsupervised calibration accuracy we

compared the camera parameters estimation in 8 image of

a cluttered environment against ground truth calibration ob-

tained with [1]. In Fig. 5, we show results of: (i) using

3 manually selected lines per image and calibrating with

the minimal solution of section 3.2; and (ii) using the com-

pletely unsupervised algorithm described in this paper. It

can be seen that the estimation is accurate and robust even

in a heavily cluttered environment.

In Fig. 7, we compare our approach with [9] by cor-

recting the radial distortion in some images dominated by

straight world lines, showing that out approach outperforms

[9] for the estimation of the center and amount of distortion

in both robustness and accuracy. In Fig. 6 we present results

in challenging scenarios mined from the internet (where the

method in [9] fails to obtain a valid calibration).

Note that, in the absence of large segments in the image,

the estimation of a and s (Table 1, steps 1 to 3) becomes

very unstable (see Fig. 2c). To overcome this we set a and

s to reasonable values in images with small segments and

proceed with the estimation from steps 4 to 7.

Further results are shown in the supplementary material,

including the complete set of images used in Fig. 5. The

code is implemented in MATLAB and is publicly available

for download at the author’s website.
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Figure 5: Calibration percentage deviation from ground

truth. The top left image shows an exemplar of the man-

ually selected lines. The bottom right image shows the au-

tomatically selected lines during unsupervised calibration.

Figure 7: Comparison in distortion correction between

Bukhari et al. [9] (leftmost image) and our method (right-

most image) in 2 scenes. For each scene we show the seg-

ment ei on the top and the resulting distortion correction in

the bottom.

7. Conclusion

In this work we have proposed a new method for the cal-

ibration of a camera using a minimum of 3 natural lines in

a single image. Our work is based on a solid geometric in-

terpretation of the line projection under the division model

in perspective cameras and is able to estimate the principal

point, aspect ratio, skew angle and a coupled parameter of

the distortion and focal distance. For unsupervised camera

calibration, we devised a framework for the joint line de-

tection and calibration parameters estimation from a single

image, that has been tested in challenging situations.
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Figure 6: Results of the unsupervised calibration in images mined from the internet. The first column shows the segments ei
highlighted in different colors. The second column shows the detected lines consistent with the calibration. The third column

shown the distortion correction. The next 3 columns have the same meaning.
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