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Abstract— Many robotic systems combine cameras with
Laser Rangefinders (LRF) for simultaneously achieving multi-
purpose visual sensing and accurate depth recovery. Employing
a single sensor modality for accomplishing both goals is an
appealing proposition because it enables substantial savings in
equipment, and tends to decrease the overall complexity of
the system. This article explores the possibility of replacing
LRF by passive stereo vision for reconstructing the scene along
a 2D scan plane. We present a new stereo algorithm that is
specifically tailored for the purpose. The algorithm recovers the
depth along the scan plane using a symmetry-based matching
cost (SymStereo), and refines the raw estimates by applying
dynamic programming, followed by a Markov Random Field
(MRF) that decides if the reconstructed contour is a line or
not. We report for the first time comparative experiments
between Stereo Rangefinding (SRF) and LRF. The results are
encouraging by showing that SRF can be a plausible alternative
to LRF in several application scenarios. Moreover, since SRF
also enables independent depth estimates along multiple scan
planes with arbitrary orientation, being the only constraint that
the scan plane intersects the stereo baseline, it is an important
benefit that can be decisive for many robotic applications.

I. INTRODUCTION

There are many applications in robotics that make si-
multaneous use of visual data and laser-scans. A non-
exhaustive list of examples includes autonomous navigation
[1], pedestrian detection [2], object classification [3], and
self-localization in indoor and outdoor scenes [4]. Laser
Rangefinding is popular because it enables accurate depth
measures in real-time, being effective under most operating
conditions like long range, no illumination, lack of sur-
face textures, etc. On the other hand, passive vision is an
extremely versatile sensor modality, providing rich image
information that can be used for multiple purposes rang-
ing from obstacle detection to object recognition, passing
by texture classification, self-localization and mapping, and
human-machine interfaces1.

Replacing two sensor modalities by a single one with-
out sacrificing skills or system capabilities is an appealing
proposition. This would lead to savings in equipment with
a positive impact in the overall cost of the final system.
Moreover, it would contribute to decrease the R&D effort,
namely by avoiding complex middleware for the synchronous
acquisition of different sensor modalities. Other possible ad-
vantages are payload reduction, which is specially important
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1Note that replacing a LRF and a camera by a RGB-D camera is not a
viable alternative due to the large depth ranges of operation and variable
lighting conditions.

in flying robots and aero-spatial systems [5], and enhanced
autonomy by increasing the battery-life.

It is unlikely that LRF can ever replace passive vision
without losses in versatility and system capabilities. For-
tunately, the opposite seems much more feasible specially
in cases where two calibrated cameras are available. It is
well known that stereo enables 3D reconstruction by densely
associating pixels across images and triangulating. Thus, it
is plausible that it can succeed in estimating depth along a
scan plane with an accuracy close to LRF. Please note that for
the case of robots that originally combine monocular vision
with laser, the replacement of a LRF by a second camera
is still an attractive proposition: the camera is in general
less expensive, the synchronization of image acquisition is a
trivial matter, and both the payload and energy consumption
tend to decrease.

This work is motivated by the possibility of replacing
LRF by stereo vision in robotic applications. The article
proposes a new stereo algorithm that is specifically tailored
for estimating depth along an arbitrary virtual scan plane.
Since the resulting profile cut of the scene resembles the
one that would be obtained by LRF, the technique is named
Stereo Rangefinding (SRF). The depth estimates obtained
with SRF are compared against real range data acquired by
a state-of-the-art LRF equipment. The experiment clearly
shows the strengths and weaknesses of each technology,
providing evidence that passive stereo can be an alternative
to LRF in certain application contexts.

A. Contributions
Although dense stereo is a well studied topic [6], several

aspects must be addressed in order for stereo to be an alter-
native to LRF: First, the objective of most stereo methods
is to assign discrete disparity labels to image pixels, which
does not necessarily mean to accurately estimate metric
depth. As shown latter in the paper, perfect image matching
results often correspond to reconstructions that are inaccurate
when compared to LRF measurements. Second, while LRF
recovers depth along a scan plane, stereo provides depth
estimates for every pixel in the image. A possible solution for
mimicking the LRF output is to fully reconstruct the scene
and intersect the result with the scan plane. This is highly
inefficient because it requires unnecessary computation that
will difficult real-time implementations. Third, stereo match-
ing is often ambiguous in low textured surfaces, lacking the
robustness of LRF to different operating scenarios.

This paper proposes a new stereo algorithm for addressing
the difficulties mentioned above. While most stereo methods
rely in photo-consistency for matching cost, we use induced



TABLE I
SPECIFICATIONS OF THE CAMERA AND THE LRF

Camera LRF
Manufacturer Point-Grey Manufacturer Sick

Baseline ≈ 45 cm Model LMS200
Resolution 1280× 960 Horiz. Res. 0.25o

image symmetry for obtaining an energy that quantifies
likelihood of pixel correspondence. This framework, called
SymStereo, has been recently introduced in [7] where it is
proved to be highly effective in estimating depth along virtual
scan planes passing between the cameras. According to [8],
SymStereo is the top performer metric for obtaining profile
cuts of the scene, being specially resilient to situations of
low texture.

We also propose several strategies for refining the en-
ergy results generated by SymStereo, and accurately locate
the profile cut C where the virtual scan plane meets the
scene. Since C is usually the union of a limited number
of continuous contours, we use dynamic programming (DP)
for enforcing connectivity between point detections across
contiguous epipolar lines. In addition, it is also assumed that
the contours in C are often line segments corresponding to
plane surfaces that dominate man-made environments. Thus,
and in parallel to DP, we run a weighted Hough transform
for extracting lines in the energy output of SymStereo. This
procedure gives raise to more than one hypothesis for the
intersections between epipolar lines and the profile cut C.
The decision problem is formulated as a Markov Random
Field (MRF) that assigns to each epipolar line a unique label.
This label either corresponds to the DP result, or to one of
the lines extracted with the Hough transform.

The approach for SFR is experimentally evaluated using a
setup specially built for the purpose (see Fig. 1). The setup
combines two cameras with a 2D LRF that are carefully
calibrated for enabling direct comparison between the metric
results achieved with stereo and laser. To the best of our
knowledge this is the first experiment of the kind reported
in the literature. In [9], Morales and Klette evaluate dense
disparity maps against the 3D range data obtained with LRF.
However, their objective is to obtain reliable ground truth
for benchmarking different stereo algorithms, rather than
comparing the accuracy of the two sensor modalities. Hrabar
presents in [10] a comparison of stereo vision and laser-based
range sensing for rotorcraft unnamed aerial vehicle obstacle
avoidance. In this work the main evaluation criteria is not
the metric depth, but instead the success rate in obstacle
avoidance.

II. EXPERIMENTAL SETUP

We briefly introduce the experimental setup for the syn-
chronous acquisition of stereo images and range data. The
setup combines a 2D LRF with two perspective cameras for
which the specifications are provided in Tab.I. The sensors
are mounted on a rigid mobile platform with the laser placed
between the cameras as shown in Fig. 1. The camera baseline

Fig. 1. Experimental setup. The top camera C1 (the reference view) points
down, the bottom camera C2 points up, and the LRF is positioned between
the cameras. The LRF recovers the profile cut C that is the contour where
the scan plane Π meets the scene structure. C is projected in the two images
I1 and I2 using the extrinsic calibration results.

is around 45 cm and the distance between the top camera and
the laser is roughly 19.5 cm. The cameras are not aligned,
and C1 is assumed to be the reference view.

Referring to Fig. 1, the stereo cameras are calibrated using
Bouguet’s calibration toolbox [11], and the relative pose
between the LRF and the reference camera C1 is estimated
using the minimal solution proposed by Vasconcelos et al.
[12]. This enables to determine the homogeneous representa-
tion of the scan plane Π in the stereo coordinate system, and
compute the plane-homographies H1 and H2 that accurately
map range data into images I1 and I2.

III. STEREO RANGEFINDING

This section describes the SymStereo framework that is
used to generate a 2D energy signal E given the stereo images
I1 and I2, and the plane-homographies H1 and H2 that relate
the scan plane Π with each view. The energy E can be
understood as an indirect measurement of the likelihood of a
point location in Π to lie in the profile cut C, with C being the
contour where the scan plane intersects the scene surfaces.

A. Overview of SymStereo
Plane sweeping is a well known stereo technique that was

first introduced in [13] for finding matches across multiple
images without the need of rectification. The basic idea
consists in sampling the 3D space by a family of parallel
virtual planes, back-project the images onto these planes,
and find the locations where the back-projections are most
similar. Ideally, these locations correspond to the intersection
points of the plane with the imaged surfaces, which enables
depth recovery. SymStereo relates with Plane Sweeping in
the sense that it also considers virtual planes in the 3D space,
however there are two major differences with respect to
[13]: (i) we exclusively consider virtual planes that intersect
the stereo baseline in a point between the cameras; and
(ii) instead of looking for regions where back-projections
correlate, the profile of intersection between the virtual plane
and the scene structure is identified as a mirroring contour
between back-projected images.

Most works in the literature consider virtual planes in-
tersecting the baseline a degenerate configuration. Under



(a) Left View (I1) (b) Virtual plane (Π) (c) Right View (I2)

(d) Left back. Ib1 (e) Is = Ib1 + Ib2 (f) Right back. Ib2

Fig. 2. The Monopoly sequence [6] is used to illustrate our approach (note
that it corresponds to the traditional stereo setup, in which the images are
aligned side-by-side.). The virtual scan plane Π passes between the cameras
and intersects the scene in a discontinuous curve C (b), called the profile
cut. (a) and (c) show the two input views, I1 and I2, with the projection
of C overlaid. Ib1 and Ib2 are obtained by back-projecting I1 and I2 on Π.
The two back-projections are mirrored with respect to the C (d) and (f).
Adding Ib1 and Ib2 results in an image Is that is symmetric around C (e),
while subtracting gives rise to a anti-symmetric signal.

such circumstances the left and right back-projections do not
overlap in the locations where the plane meets the structure,
but become reflected one with respect to the other (see
Fig. 2). Thus, the sum of both back-projections gives rise
to an image signal that is locally symmetric around the
profile cut, while the subtraction results in a signal that
is anti-symmetric. These symmetries are usually not “strict
symmetries” due to perspective distortion, surface slant and
occlusions, but can be used as cues to recover the profile cut
C where the virtual plane meets the scene.

As input SymStereo receives a pair of calibrated stereo
views, I1 and I2, and a pre-defined virtual plane that, in the
particular case of our application is the laser scan plane Π.
The orientation of the virtual plane is arbitrary with the only
requirement being that it intersects the baseline without going
through the camera centers (Fig. 3(a)). The two stereo images
are back-projected onto Π using the homography mappings,
and the warping results are added and subtracted giving rise
to signals Is and Ia. The former is locally symmetric around
the contour C that we aim to estimate, while the latter is anti-
symmetric.

The back-projection onto the virtual scan plane Π is not
trivial and Sec. III-B describes in detail how the rendering
of symmetric and anti-symmetric image signals can be
accomplished in a computationally efficient manner. The
warping results Is and Ia are properly rectified with the
epipolar lines being aligned. Under such circumstances, the
contour C intersects each epipolar line of the image signals
Is and Ia in a single point, and the symmetry analysis can
be independently carried for each line using a 1D log-Gabor
transform [14]. This process is described in Sec. III-C, with
Is and Ia giving raise to the symmetry and anti-symmetry
energy images Es and Ea, that are multiplied to generate the

final energy E.

B. Generation of symmetric/antisymmetric signals
Consider a virtual scan plane Π, with an arbitrary normal

orientation, that intersects the baseline in the point O (see
Fig. 3). As discussed above, by back-projecting the stereo
views onto Π, it is possible to generate two distinct image
signals Is and Ia that are symmetric and anti-symmetric at
the locations where the plane cuts the scene structure. This
section shows how to render the back-projection images Ib1
and Ib2 efficiently.

Without lack of generality we assume a maximum value
for the scene depth (note that the working range of the
LRF is set to 8m, so that for the experiments we also set
this maximum depth for SymStereo), which means that the
profile cut C must lie on the area spreading between O
and line Lz where the plane of maximum depth meets Π
(Fig. 3(a)). Thus, for each image I1 and I2 we can define
an interest region by the following steps (refer to Fig. 3(b)):

1) Determine lines lz and π by projecting LZ and the line
at infinity, using the known plane-to-image homogra-
phies H1 and H2

2) For each image corner Ai, consider the line defined
by the corner and the epipole e, and determine the
intersections Zi and Si with lz and π

3) If the cross-ratio {Zi, e;Ai,Si} is negative, then the
corner Ai is in the interest region, otherwise it is
outside; if the cross-ratios are all positive then the
interest region is empty, if the cross-ratios are all
negative then the interest region is the entire image,
otherwise the interest region is the polygon defined
by the corners Ai with negative cross-ratio and the
intersections of lz with the image borders.

The profile cut C can only be recovered if it is simul-
taneously seen in both views. Thus, the search region can
be further constrained by back-projecting the boundaries of
the bottom and top interest regions onto Π and finding their
intersection polygon (Fig. 3(c)). Mapping the polygon back
into the input views yields the image regions that must
be warped. Signals Ib1 and Ib2 of Fig. 2 were obtained by
warping the image search regions by the inverse of the plane-
to-image homographies H1 and H2 using an uniform plane
tessellation.

Two issues remain: (i) the epipolar lines are not vertically
aligned, which can complicate subsequent processing and (ii)
a uniform plane tessellation does account for the original
image resolution, causing a magnification that increases
with depth. We address these problems by rectifying the
back-projections using a normalizing transformation HN .
HN is a projective transformation on the cut plane Π that
inscribes the search polygon in an unitary square as shown
by Fig. 3(c). Lines h1 and h2, that join the origin O with
the top and bottom vertex of the polygon, are mapped into
the top and bottom sides of the square. This grants that
epipolar lines become vertically aligned. Lines v1 and v2

are chosen so that the transformed polygon is enclosed by
the square and has maximum area. The resolution of the
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(c) Normalization using HN (d) Ib1 and Ib2

Fig. 3. Back-projection onto a virtual scan plane Π with arbitrary normal orientation. (a) side view where the scene structure is assumed to lie between
the cameras and the plane of maximum depth ΠZ . The entire top image is considered an interest region because it back-projects in the area between the
origin O and the line LZ . In the case of view C2 the bottom image side is back-projected behind O, while the middle part of the image is back-projected
beyond LZ . Thus, the interest region is limited to the top most side (b). The search for the contour where Π cuts the scene surfaces needs only to be
carried in the polygon of intersection of the left and right interest regions (red). (c) The alignment of the epipolar lines and the definition of a suitable
tessellation are achieved by inscribing the search polygon into a unit square using the homography HN . (d) shows the results of warping the bottom and
top images of Fig.1 according to H−1

1 HN and H−1
2 HN .

(a) Is(top) and Ia(bottom)
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(b) 1-D Signal (Epipolar Line)

Fig. 4. (a) The generated image signals Is and Ia. The profile cut C
is shown in green, and it is rather clear that Is and Ia have a vertical
symmetry and anti-symmetry in the points of the contour. (b) shows the
intensity level of Is (blue) and Ia (red) for one epipolar line. The position
of C can be identified by searching for pixel locations that present the largest
support for both a local symmetry in Is (top) and a local anti-symmetry in
Ia (bottom).

tessellation is determined by averaging the pixel length of the
diagonal d that is mapped back in the two stereo images. The
results for warping the stereo views shown in Fig.1 by the
transformations H−1

1 HN and H−1
2 HN are shown in Fig. 3(d).

The symmetric and anti-symmetric images Is and Ia,
that will serve as input to the next stage, are obtained by
computing the sum and difference of Ib1 and Ib2. Fig. 4 shows
the generated signals for the example that we are using for
illustrating the approach. Is is clearly symmetric in the points
of the profile contour C along a particular epipolar line, while
Ia is clearly anti-symmetric. Fig. 4(b) considers the image
intensities in more detail. The local signal symmetries and
anti-symmetries at the profile cut location are not perfect
because of the joint effects of noise, sampling, perspectivity,
surface slant and occlusions. Nevertheless, by searching for
the location that has the largest symmetry support in the
top image and anti-symmetry in the bottom image, we can
clearly identify the correct profile cut point.

C. Measuring image symmetry
Each cut plane Π gives rise to a pair of image signals Is

and Ia that are respectively symmetric and anti-symmetric
at the profile cut C. This section briefly discusses the quan-
tification of local signal symmetries aimed at locating C.
Since Is and Ia are rectified with respect to the epipolar

(a) Es (b) Ea (c) E

Fig. 5. Energy obtained from signal symmetry analysis over Fig. 4(a)
(whiter corresponds to higher energy). The energy of symmetry Es has
several peaks, many of which are in locations other than the contour we
aim to detect. This is typically due to natural symmetric structures appearing
in Is. A similar observation can be made for the case of the anti-symmetry.
However, these natural symmetries and anti-symmetries rarely occur at the
same pixel-image location in Is and Ia. The pixel-wise multiplication of
Es and Ea yields E, in which many spurious detections are filtered out and
the profile cut becomes salient.

geometry, the profile contour intersects each image column
in no more than one point, and the symmetry has vertical
orientation. Therefore, we will carry the symmetry detection
in 1-D independently for each image column.

Our objective is to quantify local symmetry along points
in a 1D signal. Moreover, the chosen algorithm must handle
low textured regions and be computationally efficient. Taking
these specifications into account, we adapted for the 1D case
the approach proposed by Kovesi [14] that uses a log-Gabor
wavelet transform for measuring symmetry at pixel image
locations.

Kovesi shows that symmetry points give rise to specific
phase patterns in the Fourier series of the signal [14]. Thus,
he proposes to measure local symmetry and anti-symmetry
by applying a bank of log-Gabor filters at different wavelet
scales. The output is the energy of symmetry along the
columns of image Is, and the energy of anti-symmetry
along the columns of image Ia (Fig. 5(a) and (b)). Since
the profile cut C is at the same image location in Is and
Ia, the two energy signals are multiplied yielding the joint
energy signal E (Fig. 5(c)). As shown in Fig. 5(c), in textured
regions the image of the profile cut can be clearly identified
due to a strong energy ridge. However, in low-textured
regions the energy is widely dispersed around the correct
location. We will see in the next section that it is possible to
accurately estimate the profile cut using global approaches,
and implicitly recover depth along the virtual scan plane.
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Fig. 6. Overview of the SRF framework. The SymStereo algorithm is used
for calculating the symmetry image Is and the joint energy E, which are
used as input for the refinement steps.

IV. REFINEMENT FOR SYMSTEREO

As described previously, the contour C that we aim to
estimate intersects each column of the image Ib1 in a single
point. A naive approach for locating C is to simply select
the energy maxima in E along each column. However, and
as shown in Fig. 5, this would lead to very noisy estimates.
This section proposes to improve the estimation of the profile
cut by considering two soft constraints in parallel:

1) The point locations where the profile cut intersects
contiguous epipolar lines are likely to be connected.
This prior can be enforced using dynamic program-
ming (DP) for detecting the contour C in the energy
image E (Sec. IV-A).

2) For the case of operation in man-made environments,
the segments in the profile cut C are often line segments
that correspond to the intersection of the scan plane
with planar surfaces in the scene. This prior can be
enforced by using the Hough Transform weighted by
the energy E (Sec. IV-B).

The DP provides a generic contour estimate that is not a
line, while the hough transform provides N line estimates.
The decision about the correct hypothesis for the location
of the profile cut in each image column of Ib1 is taken by a
Markov Random Field (MRF) formulation (Sec. IV-C). The
overall flow of the algorithm is depicted in Fig. 6, in which
the input to the refinement steps is the symmetry image Is
and the joint energy E.

A. Dynamic Programming (DP)
We use a simple optimization approach for obtaining a

binary labeling of the image Ib1, so that each image column
x has only one pixel y set to one, that corresponds to
the most likely pixel location lying in the profile cut. This
is accomplished using a straightforward dynamic program-
ming approach, similar to the scanline optimization that is
described in [6]. The algorithm works by computing the
maximum cost path in E, where the energy for each pixel
p=(xp, yp) is re-defined as:

D(xp, yp)=E(xp, yp)+min
y

(D(xp−1, y)+VDP (yp, y)) (1)

(a) CDP (b) Csi (c) CMRF

Fig. 7. 2 examples for the estimation of the profile cut location, green
is the range data of the LRF. (a) estimated using Dynamic Programming
(red), the correct location is only detected in textured regions or near strong
edges; (b) lines (yellow and orange) detected using the hough transform,
corresponding to the intersection of the virtual scan plane with planar scenes;
and (c) MRF labeling decides between CDP (cyan) and Csi (blue).

with VDP being a smoothness term given by

VDP (yp,y)=






λDP
|Is(xp,yp)−Is(xp−1,y)| if (yp − y) > 0

0 otherwise

where λDP is a constant parameter. The binary labeling is
accomplished by selecting for each image column xp the
pixel (xp, yp) with maximum cost D. Thus, we obtain a
contour corresponding to a possible location of the profile
cut expressed in discrete terms, according to the plane
tessellation described in Sec. III-B. In order to refine the
contour estimation and obtain sub-pixel precision, we fit to
each xp a parabola in E around the neighborhood of yp. The
output of this step is the profile cut location CDP . Fig.7(a)
shows the estimation of the contour CDP detected in two
stereo examples. As can be seen, CDP is only accurate in
textured regions and near strong intensity edges.

B. Line detection using the Hough transform

In order to detect straight lines in Ib1, which correspond to
the intersection of Π with a planar scene surface, a weighted
Hough Transform is applied to the joint energy E. We extract
at most N line segments Csi with parameters si, where
i = 1, ..., N (a threshold for the minimum length of each line
segment is used). Fig.7(b) shows the contours Csi estimated
using the Hough Transform. We are able to accurately
locate the profile cut segments that are in accordance to
the assumed prior even in very low and repetitive textured
regions. However, the estimation is poor in the presence of
non-planar surfaces.

C. MRF for straight and non-straight profile cut labeling

Given a particular epipolar line, there are N + 1 possible
locations for the profile cut, N corresponding to the extracted
lines segments Csi and one corresponding to the estimation
CDP using dynamic programming. In order to decide which
one is the most suitable point on each epipolar line, we
formulate the decision as a labeling problem in a Markov
Random Field (MRF). The objective is to assign to each
image column x of the set X a label lx in the set L, which



is the union of all straight line segments (Csi ) and the non-
straight label corresponding to CDP . The energy to minimize
is given by:

E =
∑

x∈X

d(lx) + λMRF

∑

k∈Nx

Vxk(lx, lk),

where Nx is the 2-neighborhood defined by the two adjacent
columns k of x, λMRF is a constant parameter, and lx is
either assigned to one of the labels si (straight line) or DP
(general contour). The data function is defined as:

d(lx)=





−(Elx (x)+γS(1−S(x,lx))) if lx = DP

−Elx (x) otherwise

where Elx(x)=E(x,Clx(x)), S denotes the image entropy
in the neighborhood of x for measuring the texture, and γS
is a constant parameter. We use S for penalizing the label
DP in low-textured regions. Finally, the smoothness term is
given by:

Vxk(lx,lk)=






0 if lx = lk

|Clx (x)−Clk
(k)| if (lx ∨ lk) = DP

min(|Clx (x)−mlxlk
|,|Clk

(k)−mlxlk
) if (lx ∧ lk) = straight

where mlxlk is the intersection point between lines sx and sk,
that aims to penalize transitions between line contours that
are far away from the corresponding point of intersection.
The energy is minimized using the graph-cut (GC) method
[15], and the final estimation for the profile cut CMRF is
directly obtained from the MRF labeling. Fig.7(c) shows
the estimation in the contour CMRF . As can be observed,
the MRF correctly distinguishes between straight and non-
straight segments of the contour C, as well as decides
correctly the most suitable point of transition between the
line contributions.

V. EXPERIMENTAL RESULTS

This section compares the depth estimates achieved with
our algorithm for SRF against real range data obtained with
LRF. Fig. 8 shows pairs of stereo images and corresponding
top views of the scan plane with different depth estimates
overlaid. The green contour refers to the laser readings, the
red points concern the depth estimates obtained by Sym-
Stereo with DP refinement, and the blue contour represents
the final results after MRF labeling, with dark blue denoting
straight line segments (the Hough transform estimates), and
light blue denoting non-straight segments (the DP estimates).
The different profile cuts are projected onto the stereo views
for analysis purposes. The examples try to cover a broad
range of operating conditions including indoor and outdoor
scenes, planar and non-planar surfaces, variable illumination,
low textured regions, surface slant, and depth ranges up to
30 times the baseline. The input data consists in real image
pairs that are challenging for most dense stereo methods.
The objective is to evaluate till which extent we succeeded
in leveraging the performance of passive stereo to reach the
metric accuracy observed for LRF.

The overall results are quite encouraging. For many cases
the profile cut estimated using the SRF algorithm of Fig. 6
is coincident, or a few millimeters away, of the range data.
SymStereo followed by DP provides accurate depth estimates
whenever the profile cut C lies in textured surfaces or is close
to strong edges. This can be clearly observed in the bottom
of the poster of cases 1 and 2, the vertical wood support of
case 7, the yellow container of case 9, and the pedestrian
of case 10. Texture and edges are strong image cues that
are readily captured by SymStereo. On the other hand, the
DP depth results are often inaccurate in low-textured regions
because the symmetry energy E tends to become disperse
around the contour location, and simple path optimization
is unable to handle the ambiguity. This can be observed
in almost every wall in the examples of Fig. 8, with the
metric depth estimates being noisy and spread around the
laser range data. Fortunately, and for the case of planar
surfaces, the line segment prior followed by MRF selection
seems to be effective in correcting most of the errors. This is
shown in examples 4 and 7, where the line cuts are correctly
determined despite of low texture, as well as in examples
1, 2, 5, 6, and 8, where the low-texture is associated with
strong surface slant and high depth ranges. Also notice that
the MRF correctly decides between DP and line cut estimates
in the examples 7, 9 and 10.

Major failure occurs in the most distant walls of examples
2, 4, 9, and 10. Curiously, these poor estimates do not happen
in the cases 5, 7, and 8, despite of similar circumstances
in terms of texture, slant, and depth range. This apparent
contradiction can be explained by the fact that the induced
symmetry, that is quantified by SymStereo, is only perfect
for a particular combination of surface slant and point bΠ

where the virtual scan plane intersects the baseline (for
further details see [16]). Whenever the orientation of the
surface to be reconstructed differs from the surface slant that
grants perfect induced symmetries for a particular bΠ, then
the symmetry deviation is source of errors. This problem
is usually handled by the log-Gabor wavelets with wider
spatial support, that use global image texture information for
finding the right location of the profile cut. However, in the
absence of large textured support, the symmetry deviation is
not compensated by the log-Gabor wavelets, and the energy
E does not present a well-defined ridge along contour C (see
the last row of Fig.7). This is the main reason for the failures
observed in examples 4, 9 and 10 of Fig.8. In the case 5 the
scan plane intersects the surface further away from the white
wall, which is enough for creating a wider textured support
region. In the examples 7 and 8, the cameras are closer to the
slanted surfaces and the texture is better perceived. Remark
that in case 2, the bad depth estimation of the left wall is
mainly due to the poor illumination.

So far the comparison was carried in the scan plane
considering metric depth estimates. Let us briefly analyze
what happens in the image domain, where the projection of
the profile cut C is supposed to go through corresponding
pixels in the two views. Fig. 9 shows the zoom of a
region in the stereo pair of example 1 in Fig. 8. The DP



(a) Top Image (I1) (b) Bottom Image (I2)

Fig. 9. Image matches obtained in case 1 of Fig.8 for the region outlined
in yellow. As in the previous examples (green) corresponds to the LRF
measurements, (red) is CDP , and (blue and cyan) is CMRF , where in the
case of (cyan) the MRF decided for the DP label. In the case the virtual
scan plane intersects a textured region or near strong edges, the matching
obtained from dynamic programming over E is very accurate.

(a) Top Image (I1) (b) Bottom Image (I2)

Fig. 10. Multi-cut example. The correspondence between contours in the
top and bottom images can be idenfied by the color coding.

estimation leads to the best matching results, proving that
SymStereo can achieve accuracies of 1-2 pixels for an image
resolution of 1280 × 960 whenever the surface is textured.
It is also interesting to observe that the projection of the
range data obtained with LRF is slightly off in terms of
stereo correspondence. This is explained by small errors in
the extrinsic calibration between the cameras and the LRF
that can hardly be avoided.

Finally, Fig. 10 shows that our algorithm enables indepen-
dent depth estimate along multiple virtual scan planes, with
the only constraint being that the scan planes must intersect
the stereo baseline. The fact that SRF can mimic multiple
2D LRFs is an important benefit of the described framework
that can be decisive for many robotic projects.

VI. DISCUSSION AND CONCLUSION

We presented a new stereo pipeline specially tailored for
estimating depth along a virtual scan plane. The approach,
named Stereo Rangefinding (SRF), was experimentally com-
pared against LRF in several examples representative of
different possible operation conditions. The results were
encouraging in terms of showing that passive stereo can be
leveraged to meet the robustness and depth accuracy of laser
range data. SRF proved to be as accurate as LRF in most
of the tests, but important issues remain for the case of the
profile cut lying in slanted surfaces with very low texture.
Nevertheless, it is reasonable to claim that the current version
of the algorithm can be an alternative to LRF for operating
at short-medium ranges in man-made environments.

An important aspect that has not be discussed is the
computational complexity of the algorithms and the possi-
bility of achieving real-time performance. Since the work is
still in an exploratory stage, the experimental results were
obtained using straightforward implementations in Matlab,
with runtimes close to 1 minute per stereo pair. However,
we are convinced that computational complexity will not be
a major issue, and that it will be possible to achieve rates
of several frames per second. The underlying reason is the
fact that, with the exception of the MRF labeling, all the
steps in the pipeline have deterministic runtimes that can be
easily accelerated using GPGPU techniques. Moreover, the
MRF formulation is very simple and the convergence time
is usually small.
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Fig. 8. Qualitative comparison between the profile cuts estimated using SRF and the measurements provided by a LRF. (Green) - Measurements of the
LRF, (red) Profile Cut CDP estimated using Dynamic Programming, (blue and cyan) Profile Cut labeling obtained from the MRF, where (blue) are points
to which a line segment was assigned, while for the (cyan) points the MRF decided for the non-straight (CDP ).


