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Abstract

The robustness of visual behaviors implemented in an active vision sys-
tem depends both on the vision algorithms and control structure. To improve
robustness an evaluation of the performance of the several system algorithms
must be done. Performance analysis can be done within the framework of con-
trol theory since notions such as stability and controllability can contribute to
a better understanding of the algorithms and architectures weaknesses. In this
paper we discuss the generation of reference test target trajectories and we
characterize the performance of smooth pursuit and vergence. The responses
to motion are used to accurately identify implementation problems and pos-
sible optimizations. The system evaluation leads to solutions to enhance the
global performance and robustness.

1.1 Introduction

Robust visual control of motion depends on issues related both to vision processing
and control. Robustness of a specific visual behavior is a function of the performance
of vision and control algorithms as well as the overall architecture [1, 2, 3]. Per-
formance characterization of both vision and control aspects should be performed
within a common framework. This would enable a global view of the performance
of a specific approach. For example, when dealing with the problem of uncertainties
and coping with varying environments (which are difficult or impossible to model)
one can, in principle, choose to use more complex vision algorithms and/or more
robust control algorithms. Good decisions and choices can only be made if all the
aspects can be characterized in a common framework. Control theory has a number
of tools that enable a common global characterization of the performance in visual
servoing and active vision systems [4]. Several different measures and concepts can
be used to perform such common characterization.
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Figure 1.1: The MDOF binocular system

Many aspects related to visual servoing have been studied and several systems
demonstrated [5, 6]. One of these aspects is the issue of system dynamics. System
dynamics is essential to enable the performance optimization of the system [7, 8].
Other aspects are related to stability and the system latencies [9, 10, 11]. In [11]
Corke shows that dynamic modeling and control design are very important for the
improved performance of visual closed-loop systems. One of his main conclusions is
that a feedforward type of control strategy is necessary to achieve high-performance
visual servoing. Nonlinear aspects of system dynamics have also been addressed [12,
13]. In [12] Kelly discusses the nonlinear aspects of system dynamics and proves
that the overall closed loop system composed by the full nonlinear robot dynamics
and the controller is Lyapunov stable. In [13] Hong models the dynamics of a
two-axis camera gimbal and also proves that a model reference adaptive controller
is Lyapunov stable. In [14] Rizzi and Koditschek describe a system that takes
into account the dynamical model of the target motion. They propose a novel
triangulating state estimator and prove the convergence of the estimator. In [15, 16]
the control performance of the Yorick head platform is also presented. In special
it is considered the problem of dealing with the inherent delays and in particular
with variable delays. Problems associated with overcoming system latencies are
also discussed in [17, 18, 19].

1.2 Control of the MDOF Binocular Tracking Sys-
tem

The binocular MDOF robot head is a high-performance active vision system with
a high number of degrees of freedom [20]. Real-time complex visual behaviors
were implemented after careful kinematics modeling and adequate selection of basic
visual routines[21, 22]. Binocular tracking of 3D motion was achieved by controlling
neck pan/tilt and vergence.

In most cases visual servoing systems are analyzed as servo systems that use
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Figure 1.2: Monocular smooth pursuit block diagram. The dotted box encloses the
analog components of the structure. Block N(i(k)) represents a non-linear function.
Vxf (k) is the command sent to the motor, obtained by filtering u(k), the sum of
the estimated velocity with the position error multiplied by a gain K.Vxind(k) is
the velocity induced in image by camera motion

vision as a sensor [23, 24]. Therefore the binocular tracking system should be
considered as a servomechanism whose reference inputs are the target coordinates
in space and whose outputs are the motor velocities and/or positions. In this case
binocular vision is used to directly estimate target 3D motion parameters.

However in the case of this system, and as a result of both its mechanical
complexity and its goal (tracking of targets with unknown dynamics), we decided
to relate the system outputs with the data measured from the images. Thus this
system can be considered as a regulator whose goal is to keep the target in a
certain position in the image (usually its center). As a result of this framework
target motion is dealt with as a perturbation. If the perturbation affects the target
position and/or velocity in the image it has to be compensated for. The changes in
the head geometry during the tracking process can be used to estimate the target
3D motion parameters.

1.2.1 Monocular Smooth Pursuit. Pan/Tilt Block Diagram

Each camera joint has two independent rotational degrees of freedom: pan and
tilt. Even though pure rotation can not be guaranteed we model these degrees of
freedom as purely rotational. A schematic for one of the these degrees of freedom
is depicted in Fig 1.2 (both degrees of freedom are similar and decoupled). Notice
that 2 inputs and 2 outputs are considered. Both position and velocity of the target
in the image are to be controlled or regulated. Even though the two quantities are
closely related, this formal distinction allows for a better evaluation of some aspects
such as non-linearities and limitations in performance.





i(k) = Vxt(k)− Vxind(k)
N(i(k)) = 1⇐= i(k) 6= 0
N(i(k)) = 0⇐= i(k) = 0

(1.1)
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Figure 1.3: Vergence block diagram. Egomotion is estimated for each camera. After
that target velocities in both left and right images are computed using differential
flow. Estimated horizontal disparity (∆vxf ) is obtained by filtering the difference
of measured velocities in both images

Considering that the motion computed in the image is caused by target motion
and by camera motion, the computation of the target velocity requires that the
effects of egomotion are compensated for. The egomotion is estimated based on the
encoder readings and on the inverse kinematics. Once egomotion velocity (Vxind(k))
is compensated for, target velocity in the image plane is computed based on an affine
model of optical flow. Target position is estimated as the average location of the
set of points with non-zero optical flow in two consecutive frames (after egomotion
having been compensated for). This way what is actually computed is the center of
motion instead of target position. The estimated value will be zero whenever the
object stops, for it is computed by using function N(i(k)) (equation 1.1) .

1.2.2 Vergence Block Diagram

In this binocular system, pan and tilt control align the cyclopean Z (forward-
looking) axis with the target. Vergence control adjusts both camera positions so
that both target images are projected in the corresponding image centers. Retinal
flow disparity is used to achieve vergence control. Vergence angles for both cameras
are equal and angular vergence velocity is computed in equation 1.2 where ∆vxf is
the horizontal retinal motion disparity and f the focal length.[25]

∂β

∂t
=

∆vxf
2f

(1.2)

A schematic for vergence control is depicted in Fig.1.3. Horizontal target
motion disparity is regulated by controlling the vergence angle.

Both in smooth pursuit and vergence control, target motion acts as a pertur-
bation that has to be compensated for. To study and characterize system regula-
tion/control performance usual control test signals must be applied. Two problems



1. EVALUATION OF ROBUSTNESS AND PERFORMANCE 5

have to be considered:

• The accurate generation of perturbation signals;

• The generation of perturbation signals functionally defined, such as steps,
ramps, parabolas and sinusoids;

1.3 Reference Trajectories Generation Using Syn-
thetic Images

To characterize the system ability to compensate for the perturbations due to target
motion, specific signals have to be generated. Instead of using real targets, we
decided to use synthetic images so that the mathematical functions corresponding
to reference trajectories could be accurately generated. These images are then
used as inputs in the binocular active vision system. Given a predefined motion,
captured frames will depend, not only on the target position, but also on the camera
orientation. Due to the change on the system geometry as a result of its operation,
images have to be generated on line to take into account the specific geometry at
each time instant. Therefore at each time instant both target position and camera
orientation have to be known in the same inertial coordinate system. The former
is calculated using a specific motion model that enables the computation of any
kind of motion in space. Camera orientation is computed by taking into account
the motor encoders readings and the inverse kinematics. The inertial coordinate
system origin is placed at optical center (monocular case) or at the origin of the
cyclopean referential (binocular case).

To accurately describe the desired target motion in space the corresponding
equations are used. Motion coordinates are converted into inertial Cartesian co-
ordinates by applying the suitable transformation equations. Target coordinates
in the inertial system are converted in camera coordinates. This transformation
depends on motor positions that are known by reading the encoders. Perspective
projection is assumed for image formation. These computations are performed at
each frame time instant.

1.4 The reference trajectories equations.

To characterize control performance, target motion correspondent to a step, a ramp,
a parabola and a sinusoid should be used to perturb the system.

1.4.1 Smooth Pursuit. Pan/Tilt Control System

Reference Trajectories Defined for the Actuators

Consider the perturbation at actuator/motor output. The reference trajectories
are studied for both a rotary and a linear actuator.

In the former the actuator is a rotary motor and the camera undergoes a pure
rotation around the Y (pan) and X (tilt) axis. Consider target motion equations
defined in spherical coordinates (ρ, φ, θ), where ρ is the radius or depth, φ the
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elevation angle and θ the horizontal angular displacement. The target angular
position θ(t) at time t is given by one of:

θ(t) =

{
Const⇐= t > 0
0⇐= t = 0

(1.3)

θ(t) = ω.t (1.4)

θ(t) =
γ

2
.t2 (1.5)

θ(t) = A sin(ω.t) (1.6)

Equations 1.3, 1.4, 1.5 and 1.6 describe a step, a ramp, a parabola and a
sinusoid for the pan motor. For instance, if the target moves according to equation
1.4, the motor has to rotate with constant angular velocity ω to track the target.
These definitions can be extended to the tilt motor by making θ = 0 and varying
φ according to equations 1.3 to 1.6.

Assume now a linear actuator and camera moving along the X axis. Cartesian
equations 1.7 to 1.10 are the equivalent to spherical equations 1.3 to 1.16. In all
cases the depth zi is made constant.

xi(t) =

{
Const⇐= t > 0
0⇐= t = 0

(1.7)

xi(t) = v.t (1.8)

xi(t) =
a

2
.t2 (1.9)

xi(t) = A sin(v.t) (1.10)

Reference Test Signals Defined in Image. Static Camera Situation

To relate the system outputs with the data measured from the images, control
test signals must be generated in the image plane. Thus a step (in position) is an
abrupt change of target position in image. A ramp/parabola (in position) occurs
when the 3D target motion generates motion with constant velocity/acceleration in
the image plane. And a sinusoid is generated whenever the image target position
and velocity are described by sinusoidal functions of time (with a phase difference
of 90 degrees).

ximg = f. tan(θ) (1.11)

dximg
dt

= f.
dθ

dt
.

1

cos2(θ)
(1.12)

d2ximg
dt2

= f.
d2θ

dt2
.

1

cos2(θ)
+ 2.f.(

dθ

dt
)2.

tan(θ)

cos2(θ)
(1.13)

Consider that the camera is static. The observations depicted in Fig.1.4 agree
with equations derived in 1.11, 1.12, 1.13 which relate angular position (θ) in space
with target image coordinates (ximg, yimg, zimg) (f is the focal length and perspec-
tive projection is assumed). Notice in Fig.1.4 that, despite the inexistence of an
angular acceleration, a residual acceleration can be observed in target image mo-
tion due to the second term of equation 1.13. Target motion described by spherical
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Figure 1.4: Motion projection in a static camera. The target moves along a circular
path with constant angular velocity ω = 5(degrees) (equation 1.4). Left: Target
position(- -) and velocity (-) in image. Right: Target acceleration(-) in image

equations 1.4 to 1.6, does not generate the desired perturbations in the image plane
when the camera is static. Fig.1.4 shows that image motion distortion is significant
when θ is above 50 degrees.

ximg = f.
xi
zi

(1.14)

dximg
dt

=
f

zi
.
dxi
dt
− f.xi

z2
i

.
dzi
dt

(1.15)

d2ximg
dt2

=
f

zi
.
d2xi
dt2
− f.xi

z2
i

.
d2zi
dt2
− 2.f

z2
i

.
dxi
dt
.
dzi
dt
− 2.f.xi

z3
i

.(
dzi
dt

)2 (1.16)

However, in the case of a target moving in a rectilinear trajectory parallel to the
image plane (constant depth), the standard perturbations are obtained. Whenever
images are obtained with a static camera, linear motion described by equations 1.7
to 1.10 is adequate to generate the standard control test signals. This conclusion is
confirmed by equations 1.14, 1.15 and 1.16 (zi remains constant) that relate image
coordinates with Cartesian motion coordinates. This result is still true if camera
moves along a linear path.

Reference Test Signals Defined in Image. Camera Undergoing Pure
Rotation

The MDOF binocular system uses rotary eye joints. Thus, considering the
monocular situation, the camera moves along a circular trajectory. We assume
camera rotation around Xc axis (pan), the target moving along a circular/spherical
path (see Fig.1.5) and perspective projection modeling image formation.

ximg = f. tan(θ − αp) (1.17)

dximg
dt

= f.
dθ

dt
.

1

cos2(θ − αp)
− f.dαp

dt
.

1

cos2(θ − αp)
(1.18)
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Figure 1.5: Tracking using the pan motor. αp is the motor angular position and
θ(t) the target angular position

d2ximg
dt2

= f.(
d2θ

dt2
− d2αp

dt2
).

1

cos2(θ − αp)
+ 2f.(

dθ

dt
− dαp

dt
)2.

tan(θ − αp)
cos2(θ − αp)

(1.19)

Target position (ximg(t)) in the image is dependent both on the camera angular
position (αp(t)) and target angular position (θ(t)) (equation 1.17). To compute the
target velocity in the image, equation 1.18 is derived by differentiating equation
1.17. Notice that the target and camera angular positions are time dependent.
By differentiating equation 1.18 the expression for target acceleration in image is
obtained (equation 1.19).

As can be noticed in these equations, motion in the image is caused both by
target motion and camera motion. For a perfect tracking situation the former is
compensated by the latter and no motion is detected in the image. Whenever
perfect tracking does not happen there will be image motion as a result of tracking
error. Therefore, the objective of tracking is to move the camera in such a way
that egomotion compensates for the motion induced in the image by the target.
From this point of view the system perturbation will be the motion induced by the
target.

ωi = f.
dθ

dt
.

1

cos2(θ − αp)
(1.20)

γi.t = f.
dθ

dt
.

1

cos2(θ − αp)
(1.21)

Aωi cos(ωi.t) = f.
dθ

dt
.

1

cos2(θ − αp)
(1.22)

The reference trajectories that generate a perturbation in ramp, parabola and
sinusoid are derived by solving the differential equations 1.20, 1.21 and 1.22 in order
to θ(t) (ωi, γi and A are the desired induced velocity, acceleration and amplitude).
The difficulty is that the reference trajectories (θ(t)) will depend on the system
reaction to the perturbation (αp(t)). That is due to the fact that the image is not
only function of target position in space, but also of camera orientation. Thus to
induce a constant velocity in image during operation, target angular velocity must
be computed at each frame time instant as a function of the the tracking error.

Consider that perfect tracking is going to occur. The tracking error will be null
and αp(t) = θ(t). With this assumption the solutions of differential equations 1.20
to 1.21 are given by equations 1.4 to 1.6 (making ω = ωi

f and γ = γi
f ). These are the
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Figure 1.6: Top view of binocular system. The distance between the cameras is 2b
and symmetric vergence is assumed. ρ(t) is the target Z coordinate.

reference trajectories that we are going to use to characterize the system. It is true
that for instance, trajectory of eq.1.4 (the ramp) only induces a constant velocity
in image if tracking error is null (small velocity variation will occur otherwise).
However it is independent of the system reaction and the generated perturbation
allows the evaluation of system ability to recover from tracking errors.

1.4.2 The Vergence Control System

Taking into account the considerations of last section, the reference trajectories
for vergence control characterization of the binocular system depicted in Fig. 1.6
are now discussed. The distance between the cameras is 2b and symmetric vergence
is assumed. The Z coordinate of the target position (in the cyclopean coordinate
frame) is ρ.

∆ximg = 2f.
−ρ. sin(β) + b. cos(β)

ρ. cos(β) + b. sin(β)
(1.23)

β = arctan(
b

ρ
) (1.24)

Vergence control is achieved using retinal disparity. The differences of target
position and velocity in the images of both cameras are the system stimuli. The
position retinal disparity is calculated in equation 1.23. Perfect tracking is achieved
when β is computed by equation 1.24. In this case ∆ximg = 0.

∆V ximg = − 2fb√
ρ2 + b2

.
dρ

dt
(1.25)

Deriving equation 1.23 the expression for velocity retinal disparity is obtained.
Suppressing the egomotion effect (considering dβ

dt = 0), the stimulus generated by
target motion is computed in equation 1.25 assuming a perfect tracking situation.

2fb.
dρ

dt
+ v.ρ2 = −v.b2 (1.26)

a = − 2fb

ρ2 + b2
.
d2ρ

dt2
+ ρ.

4fb

(ρ2 + b2)2
.(
dρ

dt
)2 (1.27)
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Figure 1.7: Left: Ramp perturbation. Target motion to generate a constant dispar-
ity of 1 pixel/frame (ρ(0) = 5(m)).Right: Sinusoidal Perturbation. Target motion
that generates a sinusoidal velocity disparity in images(A = 2(pixel), ω = 2(rad/s)
and ρ(0) = 1(m))

2fb.
dρ

dt
+Aw cos(wt).ρ2 = −Aw cos(wt).b2 (1.28)

The target motion equation ρ(t) that generates a motion corresponding to a
ramp in image target position (constant velocity disparity v) is determined solving
equation 1.26 derived from 1.25. For a parabola (constant acceleration disparity
a) equation 1.27 must be solved. In the case of a sinusoidal stimulus, the relevant
target motion equation ρ(t) can be computed by solving equation 1.28. Test signals
obtained by solving differential equations 1.26 and 1.28 are depicted in Fig.1.7.
Notice that to induce a constant velocity disparity in the images the 3D target
velocity increases with depth. This is due to the perspective projection.

1.5 System Response to Motion

In this section we analyze the system ability to compensate for perturbations due
to target motion.

1.5.1 Smooth Pursuit. Pan/Tilt Control Algorithm

As shown previously spherical/circular target motion must be used to generate the
standard control test signals. Pan and tilt control algorithms are identical except
for some of the parameter values. Therefore we will consider only the pan axis.

Step Response

A step in position is applied to the system. Fig. 1.8 shows the evolution of
the target position (Xt) in the image. An overshoot of about 10% occurs. The
regulation is done with a steady state error of about 1.5 pixels. These observations
are in agreement with the observed positional servo-mechanical performance. This
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Figure 1.8: Left: Regulation performance. Target position (- -) and velocity (-)
in the image. Right: Servo-mechanical performance. Target angular position (.),
motor position (- -) and velocity (-)

is a typical second order step response of a type 0 system. In experiments done with
smaller amplitude steps the system fully compensates for target motion. In these
situations the regulation error is 0 and we have a type 1 system. The type of re-
sponse depends on the step amplitude which clearly indicates a non-linear behavior.
One of the main reasons for the non-linear behavior is the way position feedback is
performed. After compensating for egomotion, target position is estimated as the
average location of the set of points with non-zero optical flow in two consecutive
frames. Thus the center of motion is calculated instead of the target position. If the
target stops, any displacement detected in the image is due to camera motion. In
that case target velocity (Vxt(k)) is equal to the induced velocity (Vxind(k)) and the
position estimate Cx will be 0. Therefore target position would only be estimated
at the step transition time instant. Only with egomotion as a pure rotation would
this occur. In practice sampling and misalignment errors between the rotation axis
and the center of projection introduce small errors.

A step in position corresponds to an impulse perturbation in velocity. Fig 1.8
shows the system ability to cancel the perturbation. Note that only the first peak
velocity is due to real target motion.

Ramp Response

Fig.1.9 exhibits the ramp response for a velocity of 10 deg/s (1.5 pixel/frame).
The target moves about 6 pixels off the center of image before the system starts
to compensate for it. It clearly presents an initial inertia where the action of
the Kalman filter plays a major role. The Kalman filtering limits the effect of
measurement errors and allows smooth motion without oscillations.

Considering the motor performance we have a type 1 position response to a
ramp and a second order type 1 velocity response to a step. The position measure-
ment error

e(k) = Xt(k)− Cx(k) (1.29)

will be directly proportional to the speed of motion.
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Figure 1.9: Left:Regulation performance.Target position (- -) and velocity (-) in
the image. Right: Kalman filtering. Kalman input u(k) (.) and output Vxf (k)(-)
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Figure 1.10: Left: Regulation performance. Target position (- -) and velocity (-) in
the image). Right: Velocity estimation. Target velocity (.) and flow (-)

The algorithm for velocity estimation using optical flow only performs well for
small velocities (up to 2 pixels/frame). For higher motion speeds the flow is clearly
underestimated. This represents a severe limitation that is partially compensated
for by the proportional position error component on the motor commands. Exper-
iments were performed that enabled us to conclude that the system only follows
motions with constant velocities of up to 20 deg /s.

Parabola Response

The perturbation is generated by a target moving around the camera with a
constant angular acceleration of 5 deg /s2 and an initial velocity of 1 deg /s. When
the velocity increases beyond certain values flow underestimation bounds the global
performance of the system. The system becomes unable to follow the object and
compensate for its velocity. As a consequence the object image is increasingly off
the image center and the error in position increases.



1. EVALUATION OF ROBUSTNESS AND PERFORMANCE 13

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−20

−15

−10

−5

0

5

10

15

20

time(ms)

(p
ix

el
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−25

−20

−15

−10

−5

0

5

10

15

20

25

time(ms)

(d
eg

re
e)

Figure 1.11: Left: Regulation Performance–Target position(- -) and velocity (-) in
the image. Right: Servo-mechanical performance in position. Motor position (- -)
and velocity (-). Target position (:) and velocity (.)

Sinusoidal Response

System reaction to a sinusoidal perturbation of angular velocity 2rad/s is stud-
ied. Fig. 1.11 shows target position Xt and velocity Vx in the image. Non-linear
distortions, mainly caused by velocity underestimation, can be observed. Notice
the phase lag and the gain in position motor response in Fig. 1.11.

1.5.2 Vergence Control System

Fig.1.12 depicts the vergence performance in compensating for a perturbation
in step and ramp. The test signals are obtained as explained in section 4.2. These
new observations confirm that visual processing is limiting the global performance.
In the next section we describe some solutions that were explored to improve posi-
tion and velocity estimation in image.

1.6 Improvements in the Visual Processing

1.6.1 Target Position Estimation in Image

Target position estimation in the image is fundamental to keep the position regula-
tion error small and to reduce the effects of occasional erroneous velocity prediction.

Cx[k] = Cx[k − 1] + Vxind[k] (1.30)

Some problems in position estimation, that interfere with global system per-
formance, were detected. The center of motion is estimated only when the target
induces motion in the image. When no target motion is detected (after egomotion
compensation) it can be considered that the target did not move. Thus the new
position estimate should be equal to the previous estimate compensated for the
induced displacement due to camera motion(equation 1.30). Another problem is
that the center of motion is computed instead of the target position. The position
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Figure 1.12: Left: Vergence regulation performance for a step perturbation. Right:
Vergence regulation performance for a ramp perturbation.Target position(- -) and
velocity(-) disparity in the image.

estimate is computed as the average location of the set of points with non-zero
optical flow in two consecutive frames. If this set is restricted to the points of the
most recently acquired frame that have non-zero spatial derivatives, the average
location will be near the target position. The improvements in position estimation
can be observed in Fig.1.13.

1.6.2 Target Velocity Estimation in the Image

To estimate the target velocity in the image, the brightness gradient is calculated
in all pixels of the acquired frame. Considering the flow constraint equation and
assuming that all points in the image move with the same velocity, the velocity
vector (u, v) is estimated using a least squares method.

Ix.u+ Iy.v + It = 0 (1.31)

The flow constraint equation 1.31 is valid for a continuous brightness func-
tion (under the assumption of brightness constancy). However the actual function
I(x, y, t) is discrete in time and space. Aliasing problems in partial derivatives
computation can compromise a correct velocity estimation. When the target image
moves very slowly high spatial resolution is needed in order to correctly compute
the derivatives Ix and Iy and to estimate the velocity. On the other hand, if the
the target image moves fast, there are high frequencies in time and It must be
computed with shorter sampling periods. However the sampling frequency is lim-
ited to 25Hz. One solution to estimate high target velocities is to decrease the
spatial resolution. The drawback of this approach is that high frequencies are lost,
and small target movements will no longer be detected. We tested several methods
to increase the range of target velocities in the image that the system is able to
estimate. The method that gave the best results is next presented.

The method starts by building a pyramid of images with different resolutions.
Two levels are considered: the lower with a 64x64 image, and the higher with a
32x32 resolution. The flow is computed at the high level using a 2x2 mask. The
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Figure 1.13: Response for a ramp perturbation of 1.5pixel/frame (10deg/s). Left:
Position estimation using the original method. Target position (:) and target posi-
tion estimation(-). Right: Position estimation using the improved method. Target
position (:) and target position estimation (-)
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Figure 1.14: Response to a sinusoidal perturbation. Left: Velocity estimation using
the original method. Right: Velocity estimation using the new method with a two-
level pyramid . The target velocity in the image (–) and the estimated value(-).
Both methods perform a correct estimation of velocity
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Figure 1.15: Motor control loop. A PID is used to control motor position. The
sampling frequency in the closed-loop is 1KHz. A profile generator allows to control
the motor in velocity

value of the computed flow (Vhigh) is used to define the size of the mask that is
employed to estimate target velocity at the 64x64 level (Vlow). The mask can have
a size of 2,3 or 4 pixels depending on the value of Vhigh at each time instant. Notice
that the final velocity is always given by Vlow. The rule that controls the mask
size is based on intervals between predefined threshold values. To each interval
corresponds a certain mask size that it is chosen if the value of Vhigh belongs to
that interval. The threshold values are determined experimentally. The range of
velocity estimation can be increased by using more levels in the pyramid.

1.7 Motor Performance and Global System Be-
havior

The latency of the actuators is an important issue to achieve high speed track-
ing. In the MDOF robot head actuation is done using DC motors with harmonic
drives controlled by Precision Microcontrol DCX boards. The implemented control
loop is depicted in Fig.1.15. Motor position is controlled using a classic closed-loop
configuration with a digital PID controller running at 1KHz. For velocity control
the reference inputs (in position) are computed by a profile generator. This device
integrates the velocity commands sent by the user process. Acceleration and de-
celeration values can be configured to assure more or less smoothness in velocity
changes. Due to the fact that each board controls up to six axis, the user process
can only read the encoders and send commands for 6ms time intervals.

The PID of the inner position loop must be “tight” in order to minimize the
position error and guarantee small velocity rise times. Fig.1.16 exhibits the motor
response to successive velocity commands. The rise time is about 1 frame time
instant. The overshoot is not constant (non-linear behavior) and the global perfor-
mance decreases for abrupt changes in input. Therefore, during operation, abrupt
changes in velocity commands must be avoided to maximize motor performance.

A decrease in processing time from 38ms to 8ms was achieved by upgrading
the processor. The effects in global performance can be observed in Fig.1.16. In
the first implementation, the frame was captured and the actuating command was
sent just before the following frame grabbing. Considering a rise time of 1 frame
time interval, the motor only reached the velocity reference 80ms after the capture
of the corresponding frame. By decreasing the image processing time the reaction
delay is reduced to almost half the value and the system becomes more responsive.
When the second frame is grabbed, the camera is approximately moving with the
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Figure 1.16: Left: Motor response to sudden changes in velocity. The velocity com-
mand (–) and the motor velocity response measured for a sampling interval of 6ms
(-). The dashes along zero axis mark the frame time instants (40ms). Right: Regu-
lation performance for a ramp perturbation of 1.5pixel/frame (10deg/s). Processing
time of 38ms (–) and 8ms(-).

target velocity estimated in the previous iteration.

1.8 Improvements in Global Performance. Exper-
imental Results

The performance and robustness of the pan/tilt smooth pursuit improved by
decreasing the computation time and enhacing the visual processing (position and
velocity estimation)(see Fig.1.17). Fig.1.18 shows that vergence control perfor-
mance improved as well.

1.9 Summary and Conclusions

In this paper we address the problem of improving the performance and robustness
of tracking performed by a binocular active vision system. In order to enable the
evaluation of the robustness of both vision and control algorithms in a common
framework, we decided to use a methodology inspired by control techniques. The
different subsystems were characterized by their responses to test inputs. Due to the
specific features of an active vision system several questions related to the definition
of system reference inputs had to be addressed. As a result we propose and justify
a methodology for the definition and generation of such reference inputs.

System identification of some modules of the system, including the visual pro-
cessing routines (which required their linearization), was also done. The results
enabled us to identify elements that should be improved. Specifically, in this pa-
per, we described the improvements in the visual processing algorithms. These
improvements enable the system to track targets in a much larger range of depths.
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Figure 1.17: Pan/Tilt Control System. Response to a sinusoidal perturbation.
Left: Regulation performance. Target position in the image for the original (- -)
and improved implementation(-). Right: Servo-mechanical performance. Target
angular position(.), motor position in the original (- -) and improved (-) algorithm.
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Figure 1.18: Vergence Control System. Response to a sinusoidal perturbation. Left:
Regulation performance. Target position disparity in image for the original (- -)
and improved implementation(-). Right: Servo-mechanical performance. Target
depth position(.), vergence depth position in the original (- -) and improved (-)
algorithm.
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