
Using 2 Point+Normal Sets for Fast Registration of Point Clouds with
Small Overlap

Carolina Raposo and João P. Barreto

Abstract— Global 3D point cloud registration has been solved
by finding putative matches between the point clouds for
establishing alignment hypotheses. A naive approach would try
to perform exhaustive search of triplets with a cubic runtime
complexity in the number of data points. Super4PCS reduces
this complexity to linear by making use of sets of 4 coplanar
points. This paper proposes 2-Point-Normal Sets (2PNS), a new
global 3D registration approach that advances Super4PCS by
using 2 points and their normals for generating alignment
hypotheses. The dramatic improvement in the complexity of
2PNS when compared to Super4PCS is demonstrated by the
experiments that show speed-ups of two orders of magnitude
in noise-free datasets and up to 5.2× in Kinect scans, while
improving robustness and alignment accuracy, even in datasets
with overlaps as low as 5%.

I. INTRODUCTION

3D Registration is the process of finding the rigid trans-
formation that best aligns two point clouds (PCs) such that
their overlapping areas match as well as possible. It is a well
studied problem in computer vision due to its applications
in object detection and recognition, tracking, and SLAM.

The oldest and best established algorithm for solving the
PC registration problem is ICP [1]. Since it relies in iterative
optimization, if the initialization is poor, it might converge to
local minima. Many authors have worked in improving the
resilience of ICP to outliers and missing data, often observed
in 3D scans. Examples include the work [2] where local
quadratic approximations of the squared distance function
are used and the SparseICP method [3] that formulates the
registration problem using sparsity-induced norms. Similarly
to the standard ICP, all of these methods require good
initialization of the rigid transformation.

Other works, such as Go-ICP [4], have tried to avoid
the initialization issue by assuring global convergence. It is
based on a branch-and-bound scheme that searches the entire
3D motion space. Unfortunately, this requires large overlap
between the point clouds, which does not always happen due
to occlusions or acquisitions in very different viewpoints, and
scales poorly, becoming prohibitive for large datasets.

In order to avoid the requirements of good initialization
and large overlap, some authors have suggested to find
sparse correspondences between PCs and use them in an
hypothesize-and-test framework, like RANSAC, to perform
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an initial alignment that is subsequently refined by ICP.
Such approaches handle completely misaligned PCs, do
not require them to have large overlap, and are inherently
robust to outliers. The difficulty is in establishing plausible
correspondences between PCs. It is well known that a rigid
transformation that aligns two PCs can be computed in a
closed form manner from 3 correct 3D point correspon-
dences [5]. Thus, a naive approach would select 3 random
points in one point cloud and search for all possible triplets
in the other. This search would have complexity of O(N3),
with N being the number of points in the second model,
easily becoming prohibitive. This chapter proposes a method
to address this issue, named 2-Point-Normal Sets (2PNS).

A. Related work

An approach inspired by what is commonly done in
2D images is to find salient regions/landmarks in the PCs,
characterize them by a descriptor for performing associa-
tion and establish alignment hypotheses for each match in
a RANSAC-like framework. Such approaches fail mainly
because PCs are often smooth and/or noisy, which hampers
finding repeatable saliences that can be matched.

Aiger et al. [6] proposed 4-Point Congruent Sets (4PCS)
that, given 4 coplanar points in one PC, enables to exhaus-
tively search for correspondences in the other PC with a
complexity of O(N2). The key idea is to use the relations
between 4 coplanar points to define affine invariants that are
preserved by a rigid displacement. More recently, Mellado
et al. proposed the Super4PCS algorithm [7] that decreases
complexity from quadratic to linear time by using a number
of improvements in the search stage. Super4PCS has inspired
the Super Generalized 4PCS [8] that removes the coplanarity
constraint and considers general 4-point bases, leading to
speed-ups up to 6.5× when compared to Super4PCS.

In this paper, we advance the Super4PCS framework by
using not 4 points to establish an alignment hypothesis but
2 points and their normals. The normals to points in a
point cloud are relatively inexpensive to compute [9] and
have already been used in the context of registration mainly
to define local descriptors. We show that it is possible to
compute the rigid transformation R, t from 2 points and 1
normal and that matching 2 points+normals can be signifi-
cantly more efficient and robust than searching for sets of 4
points forming a congruent base. The results show that we
can obtain speed-ups up to two orders of magnitude in noise-
free datasets and up to 5.2× in Kinect scans with respect
to Super4PCS, while improving robustness and alignment
accuracy.



II. REVIEW OF SUPER4PCS [7]
Global 3D PC registration works by finding putative point

correspondences between PCs that enable to establish align-
ment hypotheses. These hypotheses are ranked according to
some metric and the transformation T with the highest score
is then refined by ICP. Since a rigid transformation can be
estimated from a minimum of 3 points [5], a naive approach
would try to perform exhaustive search of triplets with a
runtime complexity of O(N3), N being the size of the PC.
The algorithms 4PCS [6] and later Super4PCS [7] work with
sets of 4 points, instead of 3, to make the search easier.

Let P and Q be the source and target PCs, respectively, to
be registered. The goal of 4PCS and Super4PCS is to find the
transformation T that best aligns them by solving the Largest
Common Pointset (LCP) problem: maximize the cardinality
of a transformed subset of P according to the property that
every point in that subset is within a predefined distance to
Q. These methods make no assumption about the starting
poses of the PCs and are able to handle situations of small
overlap. Also, they favour the use of points in the cloud that
are far apart to increase resilience to noise and outliers.

A. The original 4PCS algorithm

The 4PCS algorithm solves the global 3D registration
problem by using coplanar sets of 4 points, rather than the
minimum sets of 3 points, allowing the employment of a
technique that efficiently matches pairs of affine invariant
ratios in 3D. The approach works by selecting a base of 4
coplanar points in the source PC P and finding all the 4-point
sets in the target PC Q that are approximately congruent
with the base, i.e. related by rigid transformations. For each
potential 4-point set from Q, the aligning transformation T is
computed and the best transformation according to the LCP
score is retained. This process is repeated in a RANSAC
[10] scheme until a good solution is found, or a maximum
number of iterations is reached.

The first step of each RANSAC iteration is the selection of
a random base of 4 coplanar points from P . The algorithm
starts by randomly selecting 3 points from P that yield a
wide triangle. The fourth point in the quadrilateral is selected
as one that is close to be planar to the other 3 but still not
too close to them. This is done by testing all the S points in
P and picking the one that best fits the criteria, with runtime
complexity of O(S).

Let B = {A,B,C,D} in Figure 1 be the randomly
selected coplanar base in source P , such that AB intersects
CD in the intermediate point E. The key idea explored by
the authors is that the ratios

r1 = ||A− E||/||A−B|| and r2 = ||C− E||/||C−D|| (1)

remain invariant under affine transformations, and hence
under rigid motion. Since distances are also preserved under
rigid transformations, these 4 invariants (r1, r2, d1 = ||A −
B||, d2 = ||C − D||) are used to constrain the search for
congruent 4-point sets in target Q. The algorithm starts by
extracting all pairs of points at distance d1 or d2 from Q,
which is done in O(N2) time, where N is the cardinality
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Fig. 1: A source P (pink) and a target Q (blue) PCs are
shown with the corresponding 4-point sets used by 4PCS
and Super4PCS. Super4PCS finds all pairs at distance d1 in
the target PC by centring a sphere of radius d1 in all points
and selecting the points that intersect with the PC.

of Q. For each extracted pair (Q1,Q2) ∈ Q with distance
d1 or d2, the intermediate points E1 and E2 are computed.
The authors explore the fact that two pairs that have their E1

and E2 coincident form a 4-point base that is related with
B by an affine transformation. Thus, the intermediate points
obtained from pairs at distance d1 are used for building an
approximate range tree structure (RS) in R3, which takes
O(M logM) to be built, where M is the number of pairs,
and has a query time of O(logM+K), K being the number
of points to be reported. The intermediate points that arise
from pairs at distance d2 are used as queries in this tree,
yielding K 4-point sets from the retrieved pairs. Since affine
invariants were used, the set of extracted bases contains sets
which are not related by a rigid transformation. These are
then removed in a verification step that takes O(K) time, by
using the angle φ between the line segments (Figure 1).

The authors claim that for large dense data sets, a heavy
uniform sampling of the PCs can be performed in order to
use only a small fraction of the points for computing the
alignment, and the full data set is then employed for the
computation of the LCP. Experiments reported in the paper
show that using as few as 5% of the data points is sufficient.
It is the use of the LCP measure that makes the method
resilient to such heavy uniform sampling.

B. Super4PCS

Recently, Mellado et al. [7] proposed the Super4PCS
algorithm that builds on 4PCS and decreases its complexity
to O(N +M +K) by solving its two main bottlenecks: the
pair extraction stage and the expensive verification step to
remove non-rigid invariant 4-point candidates.

Efficient pair extraction (in O(N) time) is achieved by
finding the points close to the spheres centred in Qi ∈ Q
and with radius d1 ± ε and d2 ± ε, where ε is a tolerance
considered due to the noise in the data. Figure 1 illustrates
this procedure, depicting a sphere of radius d1 centred in
an arbitrary point Qi. The PC Q is organized in a 3D grid,
subdivided recursively and the intersection between the set
of spheres and the subdivided volumes is computed. Pairs are
then built between the points lying in the intersected volumes
and the sphere centres.

Concerning the second bottleneck, the authors’ idea is to
extract the exact set of congruent 4-point bases that only



contains rigid-invariant candidates, avoiding the need to have
a verification/filtering step. A quadrilateral is congruent to
the base selected from P if it is composed of pairs with
the correct length (d1 and d2), and if the angle φ between
these pairs is similar to the angle formed by the two pairs
in the base. This is accomplished as follows: each pair is
represented by its intermediate point E and its orientation,
and the pairs at distance d1 are hashed by this position and
orientation, with the directions being mapped to a spherical
map. In the query stage, the position E is used to access cells
in a regular grid, such that the retrieved points lie in the same
cell as the query. Also, the corresponding spherical map is
queried using a d2 pair direction to find all pairs with angle φ
w.r.t. the query direction. This is done by intersecting a cone
of aperture 2φ around the query direction with the spherical
map. This stage has runtime complexity O(M +K) due to
the point retrieval and query of the spherical map steps.

Figure 3a shows the sequence of steps of a complete
RANSAC iteration of Super4PCS. Since normals are often
available for PCs, or can be easily computed, they can
be used to further prune the number of extracted pairs.
Whenever this information is available, Super4PCS includes
it by computing the angles θ1 and θ2 between the normals
of pairs of points with distance d1 and d2, respectively, and
extracting pairs that have similar distances and angles as the
base set extracted from P . We will consider this version of
Super4PCS with normals throughout this paper.

III. 2-POINT-NORMAL SETS (2PNS)

In this section we present 2PNS, our global 3D registration
method that builds on Super4PCS. Motivated by the fact that
normals to PCs can be computed in a robust, inexpensive
manner, we propose to use them to solve the alignment
problem. It can be shown that the rigid transformation T can
be computed from 2 points plus the normal at one of these
points. Thus, instead of searching for quadrilaterals, we look
just for pairs of points using their normals to decide if they
are a plausible match. This dramatically reduces the combi-
natorics of the search leading to a simpler, substantially less
complex algorithm, as shown in Figure 3b that presents the
scheme of a complete RANSAC iteration of our method. The
modified and removed steps w.r.t. Super4PCS are highlighted
in green and red, respectively in Figure 3a.

A. Computing normals

PC normal estimation has been a well-studied problem due
to its important applications in areas such as object detection,
segmentation, surface fitting and registration. According to a
recent work that compares several approaches for surface
normal estimation in PCs, the most accurate method is
PlanePCA [11], an optimal total least squares solution, being
the one we use in the experiments.

Since the direction of the normal is not recovered -
its symmetric is also a solution - there are always two
solutions for the unitary normal vector. This is important
because normals are used in our proposed method in the
estimation of the rotation R and symmetric vectors lead to

Fig. 2: Angles used in the 2PNS pair extraction stage.

different solutions, as shown next. A scheme for forcing
coherent directions of all normals in the two PCs being
registered could be devised, for instance by computing each
PC’s centroid and making the normal vectors point in that
direction. However, since we are dealing with cases of very
small overlap, this could introduce errors and thus we opted
to work with the two solutions for the normal vectors.

2PNS fails whenever normals are not properly estimated.
This may occur if the PC is too sparse or strongly dominated
by sharp edges and corners. However, both cases rarely
occur, either in real or synthetic scenarios, with the PCs being
often sufficiently dense and containing many smooth regions.

B. The 2PNS search to obtain putative matches

At each RANSAC iteration, our method starts by extract-
ing a random pair of points and the corresponding normals
from the source PC P . These entities are shown in Figure 4,
where P is the pink PC, (A,B) is the pair and nA,nB

the two respective normals. Since we establish alignment
hypotheses from 2 corresponding points and their normals,
it is important that the pairs extracted from the target PC
Q, shown in blue in Figure 4, are congruent with the
base pair extracted from P , i.e. can be aligned by a rigid
transformation.

Super4PCS extracts pairs that have a distance d = ||A−
B|| and an angle θ = ∠(nA,nB). However, it is known that
this leads to a set of pairs that may contain instances that
can never be aligned by a rigid transformation. Thus, we
propose to perform the search for pairs that verify not only
the conditions for d and θ, but also for the 3 extra angles
shown in Figure 2: the angle of the first normal with the line
segment joining the two points (γ1), the angle of the second
normal with the line segment (γ2), and the angle between
the two normals projected onto the plane orthogonal to the
line segment (γ3). Since angles are preserved under rigid
transformations, these 5 invariants are used for extracting
congruent pairs in the target PC Q, using the method from
Section II-B. Due to the presence of noise and outliers in the
data, a tolerance δ is considered, which can vary between 5◦

and 20◦, depending on the quality of the input data.

C. Estimation of R, t

Let (A′,B′), with normals nA′ and nB′ , be a pair of
points in the target PC Q congruent with the selected pair in
the source P , as shown in Figure 4. The rigid transformation
is estimated by first centring the two pairs in the origin (using
their centroids) and then computing the rotation R. This is
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Fig. 3: Sequence of steps of a complete RANSAC iteration of (a) Super4PCS and
(b) our method. The stages that were modified are identified in green and the ones
that were removed are shown in red.

Fig. 4: A source (pink) and a tar-
get (blue) PCs are shown with the
corresponding pairs of points and
normals. These two pairs are the
only information used for comput-
ing the rigid transformation between
the two PCs.

done in two steps: first the rotation Rα that aligns the vectors
v1 = B−A and v2 = B′−A′ is estimated; then the rotation
Rβ that aligns the normal vectors is determined. The final
rotation R comes from R = RβRα.

Rα is a simple rotation to align two vectors, defined by
the rotation axis ωα = v1 × v2 and the rotation angle
α = cos−1(v1 · v2). Let n∗P = RαnP ,P = A,B be the
rotated normal vectors. Rβ can be found by rotating an
angle β around axis v2. In order to find β, we project the
normal vectors n∗A and nA′ onto the plane defined by v2

and compute the angle between the projected vectors. Rβ
has only one unknown parameter, so one normal suffices to
fully determine the rotation (it could be done using n∗B,nB′ ).

The solution for Rβ corresponding to the other solution
for the normal vector (the symmetric one) is computed
from the angle β′ = π − β since the projected vector also
becomes symmetric. A new solution for R is estimated,
and thus this method always provides 2 solutions for the
rigid transformation. After knowing R, the translation t is
estimated from R and the translation vectors used for centring
the two pairs in the origin.

D. Comparison of complexity with Super4PCS

The improvements of our approach w.r.t. Super4PCS are
in avoiding extra computation while selecting a random base
in P , reducing in half the pair search and not requiring a
congruent set extraction stage. On the down side comes the
fact that for each pair there are two motion solutions that
must be verified, whereas Super4PCS generates only one, but
this overhead is largely compensated by the improvements
above, as shown in the experimental section.

1) Selection of the base from the source PC: The Su-
per4PCS’s procedure of extracting a coplanar quadrilateral
from P is described in Section II-A. It runs in O(S) time
because the algorithm goes through all the points in P to
find the fourth point in the base. On the other hand, our
method simply selects a random pair of points by testing a
set of pairs and choosing the widest one. This distance has
an upper bound to account for the overlap between the PCs.
Since we are not going through the whole PC, this stage is

very fast and runs in O(1) time, being independent of the
size of P . Remark that since our base is a line, instead of a
quadrilateral, we can choose a wider segment than the length
of the quadrilateral sides and still find an overlapping area.
Wider bases lead to smaller numbers of congruent sets, and
thus the algorithm runs faster and more robustly [6].

2) Congruent set extraction: The modification to the pair
extraction stage consists in performing it only once, instead
of twice as in the Super4PCS algorithm, and by using 5 rigid
invariants (a distance plus 4 angles), instead of 2, to constrain
the search. This happens because we are working with a 2-
point base, instead of a 4-point base that is decomposed into
two pairs of points. It is important to notice that, while it is
not required to include the normals of the points as input to
the Super4PCS algorithm, when this information is available,
the method uses it to further constrain the search. This is
indicated with parentheses in Figure 3a.

In Super4PCS, the pair extraction stage runs in O(N)
time, where N is the number of points in the target PC Q.
Since our method performs the pair extraction process only
once, it has half the computational complexity of Super4PCS,
running in half the time.

Besides extracting pairs in the target Q, Super4PCS
has a subsequent stage for finding congruent sets. This is
necessary because generating candidate quadrilaterals based
solely on the distance (and possibly the angle between
normals) invariant would produce sets of congruent bases
with many candidates not related by rigid transformations.
This congruent set extraction stage has a runtime complexity
of O(M +K) which is not included in our algorithm.

3) Estimation of R: The final modification performed to
Super4PCS is the process of estimating the rigid rotation
R. In the original algorithm, this is performed with Horn’s
method [5] using 3 out of the 4 points of the quadrilat-
eral and provides a unique solution. In our case there are
two solutions as explained in Section III-C. For the same
number K of congruent bases, this would lead to twice the
computational complexity. However, due to the significant
decrease in complexity in the other stages of the pipeline,
the final runtime is still significantly lower. Also, since we
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Fig. 5: Different models with small overlap
(< 30%) used for testing our proposed method
and the Super4PCS algorithm. All datasets were
downloaded from [12] and contain ground truth.

(a) Rotation error (◦) (b) Translation error (%)

Fig. 6: Results obtained with our and the Super4PCS methods for the 4
models in Figure 5 by limiting the maximum execution time as follows:
Head - 1 s, Phone - 2 s, Bird - 1 s, Bubba - 3 s.

are working with 2-point bases, wider bases can be used,
yielding less candidates. Experiments in the next section
show how our method is able to achieve similar results to
Super4PCS while being approximately 3.6× − 5.2× faster
when using Kinect scans and being two orders of magnitude
faster in noise-free datasets.

IV. EXPERIMENTS

This section reports a set of experiments performed on
several PCs with different sizes, percentages of overlap and
levels of noise. The performance of our proposed method
is assessed in terms of speed and robustness, and compared
with the state-of-the-art method Super4PCS [7] that served as
a starting point for our algorithm. The first set of experiments
was performed on the models shown in Figure 5 and we
report both the alignments obtained for a search limited in
time, which is relevant for applications with real-time re-
quirements, and the best possible results when the execution
time is not constrained. Since there is ground truth, we show
a quantitative evaluation. The second set of experiments
consisted in aligning several scans acquired with a Kinect
camera, with both methods, and the qualitative results are
shown. All these datasets were downloaded from [12].

We used the C++ source code for the Super4PCS algo-
rithm available in [12] and made the necessary modifications
to implement our method. For all PCs, the normals to each
point were computed using the PlanePCA algorithm [11]
with a neighbourhood of 20 points. All tests were performed
on a AMD Quad-Core Processor A6-3400M with a speed of
2.30 GHz and 6GB of RAM.

A. Quantitative evaluation

The first set of experiments consisted in performing the
alignment of the 4 models in Figure 5 with both our method
and Super4PCS, for 10 random initial positions of the PCs.

As explained in [6], since the LCP measure is being used
as the metric for selecting the best alignment hypothesis,
Super4PCS and 2PNS allow a very heavy sampling of the
PCs. The approximate size of the PCs and the number of
samples used are shown in Figure 5. We show quantitative
results as the angular magnitude of the residual rotation
between the ground truth and the estimated rotations, eR, in
degrees, and the norm of the difference between the ground
truth and the obtained translation vectors, et, in percentage.
We started by analysing how well both methods perform
when the maximum execution time is limited. We used a
threshold of 1 s for the head and bird datasets, 2 s for the
phone and 3 s for the bubba point set, as they have decreasing
percentages of overlap.

Figure 6 shows the distributions of the best LCPs achieved
by RANSAC in each run, and the rotation and transla-
tion errors for all models, without any ICP refinement.
The first observation is that, in the same amount of time,
our method significantly outperforms Super4PCS, providing
much smaller rotation and translation errors and larger LCPs.
More importantly, unlike Super4PCS, our method was able
to provide acceptable results as can be seen in Figures 6a and
6b that the maximum median rotation and translation errors
are below 5◦ and 5%, respectively. Also, it never diverged,
with the maximum errors being eR = 8.4◦ and et = 13.8%.

In Figure 7, we show examples of the alignments obtained
with Super4PCS and our method in the experiment with
limited time, for all models. The PCs, in arbitrary initial
positions, are accurately aligned when using our method,
which significantly facilitates a subsequent step of ICP
refinement. On the other hand, the alignment provided by
Super4PCS is very poor, as initially shown in the boxplots
of Figure 6, not being sufficiently accurate for a subsequent
refinement to be applied. This experiment demonstrates that
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Fig. 7: Alignment results and corresponding LCP
and rotation and translation errors (without ICP)
obtained with Super4PCS and our method 2PNS
in the experiment with limited time.
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Fig. 8: Best possible results obtained with our and the Super4PCS methods
using the same configuration parameters as the experiment corresponding
to Figure 6, but without setting a maximum execution time threshold.

in applications that require fast processing, our method can
be used as it is very fast in providing sufficiently good results
for a refinement step to converge to the global minimum.

In order to evaluate the best performance in terms of
accuracy of alignment that both our and the Super4PCS
methods are able to achieve, we removed the time limit and
tested the methods with the same parameters as in the first
part of this experiment. Results are shown in Figure 8 and
include not only rotation and translation errors and the best
LCP, but also the distribution of the execution times.

As expected, the accuracy of Super4PCS dramatically
increased, reaching median errors of less than 4◦ and 10%
in rotation and translation, respectively, as opposed to errors
over 100◦ and 200% that were obtained in some cases of
the first part of this experiment. The increase in the LCP
is coherent with this decrease in the registration errors.
However, despite running for over 15 minutes, Super4PCS
still did not manage to converge to a good solution in a few
initial poses of the phone and bubba datasets due to the very
small overlap. As an example, the divergence cases for the
bubba dataset corresponded to alignments similar to the one
shown in Figure 7, due to the symmetric nature of the model
that yields a local minimum. On the other hand, our method
was able to achieve good solutions in all cases in less than
30 seconds for the bubba dataset and less than 10 seconds
for the other ones. For the less problematic datasets head and
bird, both methods performed well, with our method being
able to find slightly better solutions (with larger LCPs) in
about 30% and 13% of the time, respectively.

In order to estimate the speed up achieved by our method,
we measured the time it requires to reach solutions as good
as Super4PCS’s, i.e. to achieve values of LCP equal or
higher than the ones obtained by Super4PCS. For the bubba

and phone datasets, we were able to achieve speed-ups of
117× and 58×, respectively. The reason for these very high
speed-ups is that these are synthetic noise-free datasets, and
thus we can be very restrictive in selecting the threshold
for extracting congruent pairs, leading to very few high-
quality candidates for providing alignment hypotheses, and
thus significantly decreasing computational time. For the bird
and head datasets, our algorithm runs 19.2× and 7.8× faster,
respectively, which is significantly better than the speed up
reported for the Super Generalized 4PCS method [8] that is
between 1.3× and 6.5×. Remark that the results provided in
[8] are only for datasets with more than 30% of overlap,
suggesting that the method is not able to perform well
for smaller overlaps. Also, for some models shown in [8],
Super4PCS outperforms Super Generalized 4PCS, whereas
our method is always superior. This indirect comparison
to Super Generalized 4PCS shows the superiority of our
approach w.r.t. both state-of-the-art methods.

To conclude, this experiment demonstrates the importance
of our new method as it shows that it is able to achieve
similar or even better results than Super4PCS in a fraction
of the time. Also, by limiting the execution time, while
Super4PCS clearly fails, our method still performs well,
with only a slight decrease in accuracy. This means that
our method is very fast in finding a proper solution and
increasing the execution time simply leads to more accuracy,
which may not be crucial since the method performs coarse
alignment and should be followed by a refinement step.

B. Experiments on Kinect scans
The second set of experiments consisted in registering

several scans acquired by a Kinect of an office and a hall.
Since there is no ground truth, we show the alignments
obtained with Super4PCS and our method in Figure 9. For
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Fig. 9: Registration results obtained using Super4PCS and
our method on two Kinect datasets. The total execution
times were (a) Super4PCS - 36s, our method - 10s, and
(b) Super4PCS - 57s, our method - 11s. Registration is
performed for every pair of consecutive scans. The sequences
are sorted from left to right and top to bottom.

the sake of fairness, we used the same degree of sampling
in both methods and did not limit the execution time. Also,
all results are shown without any ICP refinement.

Overall, both methods were able to correctly align all the
Kinect scans in the two examples of Figure 9, with our
method being slightly more accurate, especially in the hall
sequence (Figure 9b), as shown in the areas identified with
ellipses. Regarding the office dataset in Figure 9a, while
Super4PCS took approximately 36 s to align all 6 scans, our
method was 3.6 times faster, requiring only 10 s. A better
alignment can be observed in the table and window areas
in the output provided by our algorithm. In the 5-scan hall
example (Figure 9b), our method also provides an overall
more accurate alignment not only in the stairs and the fire
extinguisher areas but also in the other end of the PC, near
the chair and the wire on the floor. Super4PCS and our
method took 57 s and 11 s, respectively, to align the 5 scans,
corresponding to a speed up of 5.2×. The state-of-the-art
algorithm Super Generalized 4PCS [8] reports a speed up of
4× w.r.t. Super4PCS in a sequence of scans acquired with
the Kinect. Again, our method is superior since we are able
to perform 5.2× faster.

Although our method still performs significantly faster
than Super4PCS on these real datasets, it can be noticed that

the decrease in computational time is not as evident as in the
experiments from Section IV-A. This is due to the fact that,
unlike most of the models used in the first set of experiments,
these Kinect scans are noisy and possibly contain outliers,
providing a less accurate estimation of the normals. Thus, the
angular threshold used for extracting congruent sets has to be
relaxed, leading to more alignment hypotheses and hence a
higher computational time. By achieving speed ups of up
to 5.2×, this experiment confirms that including normals
in the estimation of rigid transformations is very beneficial
since very accurate results are obtained while significantly
decreasing computational time. Since there are established
algorithms for normal estimation, as long as the PC is
sufficiently dense (as happens in the case of scans acquired
with depth cameras), we believe there is no obvious reason
for performing the registration using only points.

V. CONCLUSIONS

We propose 2PNS, a new method that significantly ad-
vances the state-of-the-art in terms of global 3D registration
of PCs in arbitrary initial poses. Experiments show that our
method performs better than the state-of-the-art Super4PCS,
providing more accurate alignments, in approximately 1/5 of
the time when working with scans acquired by depth cameras
that are contaminated by noise and outliers.

As future work, we intend to study until which extent
working simultaneously with multiple bases randomly ex-
tracted from the source PC is beneficial. The idea is that,
since there would be multiple hypotheses for the base,
computational time would not be wasted in testing all the
sets congruent to a base that is noisy or does not correspond
to an overlapping area. We believe that this can provide a
significant increase in computational efficiency.
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