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Abstract

The problem of estimating the relative pose between axial cameras from pairwise
point correspondences is still open to improvement. The state-of-the-art solutions are
either too specific in its scope, assuming certain types of correspondences; too broad,
dealing with all types of generalized cameras and failing to address the specific issues of
axial cameras; or non-minimal linear solutions. The aim of this paper is to pursue new
insights on axial cameras that can lead to a suitable minimal solution for this problem.
We propose a new formulation for modeling the intersection of back-projection rays of
axial cameras through a 5×5 essential matrix that enables a better understanding of some
particular axial configurations and leads to a new set of polynomial equations that proves
to be useful in constraining the motion estimation. These equations enable to compute a
solution from 10 correspondences, an improvement over the 16-point algorithm, which is
the state-of-the-art solution within our aimed scope. Both synthetic and real experiments
show that our algorithm achieves a better performance than the 16-point algorithm in the
context of robust optimization with RANSAC.

1 Introduction
Vision systems can be classified as being central or non-central [13]. A particular imaging
device is central iff all the back-projection rays intersect in a single point in 3D, that is
the viewpoint of the camera. Whenever a vision system has more than one viewpoint it is
said to be non-central. An axial camera is a particular case of a non-central camera where
every back-projection ray intersects a line in 3D (the axis). The axial camera can be used
to model vision systems and imaging situations of practical interest. Examples include any
catadioptric system that combines a revolution mirror with a central camera for which the
viewpoint is aligned with the mirror axis (e.g. a pinhole looking at a spherical mirror) [13];
the situation of a perspective camera looking through multiple flat refractive mediums [1]; or
a multi-camera rig composed by two or more pinhole cameras with collinear optical centers
[5].

This paper addresses the problem of estimating the relative pose between two axial cam-
eras using point correspondences. Pless showed that the Plücker coordinates of two corre-
sponding back-projection rays must satisfy a bilinear constraint that can be expressed by a
6x6 matrix [9]. This general essential matrix can be estimated from a minimum of 17 point
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Figure 1: Axial camera configurations

correspondences using a DLT like approach, and its result factorized into relative camera
rotation and translation. Later in [12] Sturm observed that for the case of axial cameras
the estimation of this 6x6 matrix was under-determined. He proposed a new 5x5 essential
matrix that can be linearly determined from 16 point correspondences. More recently Kim
et al. investigated the problem of motion estimation using a camera rig composed by mul-
tiple perspective cameras with aligned optical centers [5]. They confirmed Sturm’s result
for the case of considering cross-correspondences between different cameras in the rig (Fig.
1(b)). However, if only matches between the same cameras are allowed, then it is possible to
linearly determine the relative motion using a minimum of 14 point correspondences (Fig.
1(c)).

Neither the 16-point solution described by Sturm [12], which is applicable to any ax-
ial camera, nor the 14-point algorithm proposed in [5], that is specific to non-overlapping
multiple camera rigs, are minimal solutions. The relative pose problem has 6 unknowns
meaning that in theory 6 point correspondences provide enough information for determining
the relative rotation and translation of the axial camera. Stewenius et al. proposed in [11]
a minimal solution for the relative pose between generalized cameras. However, their algo-
rithm is complex, provides a large number of possible solutions (up to 64), and, as reported
in [5], it degenerates for most axial camera configurations. This article does not provide a
minimal solution for the relative pose between axial cameras, but shows how the motion can
be computed using as few as 10 point correspondences. Our 10-point method is an advance
with respect to the previous 16-point [5, 12] and 14-point [5] algorithms, that improves the
accuracy and efficiency of motion estimation using hypothesize-and-test frameworks.

Please note that, although the 10-point algorithm generalizes to any axial camera, most
of the derivations and experiments have in mind the particular case of a conventional stereo
camera rig. There are prior works proposing minimal solutions for 6D stereo visual odometry
but they either consider sets of features observed, respectively, in four, three, and two views
[3], or use five point correspondences between two particular views plus a sixth match for
solving for the scale [7]. Unlike these works, we model the stereo rig as a generic axial
camera and make no assumptions about the matches. Since any pairwise correspondence
can be used as input, the sampling of the solution space is more thorough, being possible to
obtain correct motion estimation in circumstances for which the methods of [3, 7] are unable
to provide a solution.

Citation
Citation
{Sturm} 2005

Citation
Citation
{Kim, Li, and Hartley} 2010

Citation
Citation
{Sturm} 2005

Citation
Citation
{Kim, Li, and Hartley} 2010

Citation
Citation
{Stew{é}nius, Nist{é}r, Oskarsson, and {Å}str{ö}m} 2005

Citation
Citation
{Kim, Li, and Hartley} 2010

Citation
Citation
{Kim, Li, and Hartley} 2010

Citation
Citation
{Sturm} 2005

Citation
Citation
{Kim, Li, and Hartley} 2010

Citation
Citation
{Dunn, Clipp, and Frahm} 2011

Citation
Citation
{Nikolic} 2012

Citation
Citation
{Dunn, Clipp, and Frahm} 2011

Citation
Citation
{Nikolic} 2012



VASCONCELOS, BARRETO: RELATIVE POSE BETWEEN AXIAL CAMERAS 3

O Ô
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Figure 2: A new parameterization for axial cameras

1.1 Notation
Scalars are represented by plain letters, e.g. a, vectors are indicated by bold symbols, e.g.
t, and matrices are denoted by letters in sans serif font, e.g. T. 3D lines are expressed in
homogeneous Plucker coordinates, e.g. the 6× 1 vector L =

(
d m

)T, in which d is the
line direction and m is the line momentum. The operator [v]× designates the 3× 3 skew
symmetric matrix of a 3×1 vector v, which verifies the following property

[v]× = RT[RTv]×R

where R can be any orthonormal 3×3 matrix. We use superscripts to designate submatrices,
e. g., T{1:2,2:4} denotes the 2×3 matrix containing the T elements ranging from row 1 to 2
and from column 2 to 4.

2 A new parametrization for axial cameras
Sturm describes in [12] a 5x5 essential matrix that relates back-projection rays of two ax-
ial views. We provide a different parametrization of this matrix that, not only enables to
understand the results described in [5], but also proves to be useful in deriving polynomial
equations that will constraint the motion estimation.

2.1 Linear subspace for back-projection rays
We define two reference frames O and Ô along the camera axis B as depicted in Fig. 2(a),
with an arbitrary baseline b. The transformation of homogeneous coordinates from O to Ô
is given by a rotation

W =

0 0 1
0 −1 0
1 0 0

 (1)

and a translation
v =

(
0 0 b

)T (2)
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Given that all back-projection rays Li of an axial camera intersect the axis B, they belong
to a linear line congruent of dimension 4 [10]. This means that all rays can be represented as
a linear combination of 5 base lines Lx, Ly, Lz, L̂y, L̂z. Therefore there is a vector λi such
that for any line Li the following holds

Li =
(
Lx Ly Lz L̂y L̂z

)︸ ︷︷ ︸
Γ

λi (3)

These 5 lines that compose the linear mapping Γ can be arbitrarily chosen, assuring that
they intersect B and are linearly independent. For the purpose of our formulation we align
these lines respectively with the axes x, y, z, ŷ, ẑ in Fig. 2(a) and therefore

Γ =

(
I3×3 W{1:3,2:3}

03×3 [v]{1:3,2:3}
×

)
(4)

2.2 Essential matrix for axial cameras
Given a set of intersecting ray correspondences (Li,L′i), we can establish linear relations
using the generalized camera model introduced by Pless [9]

Li
T

(
[t]×R R

R 0

)
L′i = 0 (5)

Taking into account equation 3 this expression can be rewritten as

λi
T ΓT

(
[t]×R R

R 0

)
Γ︸ ︷︷ ︸

Φ

λ
′
i = 0 (6)

with Φ being the 5×5 essential matrix for axial cameras. By substituting equation 4 into Φ
we can define the following matrices

E1 = Φ{1:3,1:3} = [t]×R (7)

E2 = Φ{1:3,3:5} = [Rv+ t]×RW (8)

E3 = Φ{3:5,1:3} = [WT(t−v)]×WTR (9)

E4 = Φ{3:5,3:5} = [WT(Rv+ t−v)]×WTRW (10)

The placement of E1, E2, E3, E4 within Φ can be better visualized in Fig. 2(c). From the
above expressions it can be observed that E1, E2, E3, E4 are the 3×3 essential matrices that
encode the motions represented in Fig. 2(b).

From the equations 7 to 10 we can also derive the following relations

E1−E2WT−WE3 +WE4WT = 0 (11)

E1[v]×+[v]×E1− [v]×E2WT−WE3[v]× = 0 (12)

These constraints provide 8 linear equations on the parameters of Φ and therefore they can be
used to reduce this matrix from its 25 parameters to a linear combination of 17 parameters.
This means that it is possible to estimate Φ with a DLT like approach using 16 correspon-
dences, which is in conformity with the linear formulations introduced in [12].
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Figure 3: Different configurations when only two types of correspondences are established
between two stereo pairs.

2.3 A particular axial camera: the stereo rig
The above formulation applies directly to the case of motion estimation between stereo pairs,
however, there are particular configurations that require additional considerations. Further-
more, in this case it is advantageous to consider that reference frames O and Ô from Fig.
2(a) are coincident with the principal points of the stereo pair, with the translation v being
the baseline between the cameras. This way all line coordinates in the left and right cameras
will have the form

λle f t =
(
l1 l2 l3 0 0

)T (13)

λright =
(
0 0 l3 l4 l5

)T (14)

Considering the 4 cameras in this scenario, {Cle f t ,Cright ,C
′
le f t ,C

′
right}, there are 4 dif-

ferent types of correspondences that can be used: (Cle f t ,C
′
le f t), (Cle f t ,C

′
right), (Cright ,C

′
le f t),

(Cright ,C
′
right). If at least 3 of these types of correspondences are available then we can use

the formulation from section 2.2. However, when only 2 types are available Φ cannot be
fully known using just linear constraints and we can further reduce the number of parame-
ters to estimate. The cases depicted in Fig. 3(a) to 3(d) only have linear constraints on two
contiguous essential matrices that share 3 parameters (see Fig. 2(c)), and therefore we can
reduce Φ to either a 3× 5 or a 5× 3 matrix, which can be linearly estimated from just 14
correspondences. The cases depicted in Fig. 3(e) and 3(f) only have linear constraints on
essential matrices that share one single element (either E1 and E4 or E2 and E3), resulting in
17 parameters. However, we must note that the following relations

F1 = WE4WT−E1 = R[v]×− [v]×R (15)

F2 = E2WT−WE3 = R[v]×+[v]×R (16)

imply that the diagonals of F1 and F2 are respectively
(
a −a 0

)T and
(
a a 0

)T, with
a being an unkown scalar value. In either case these equations provide 2 linear constraints
that enable to reduce the number of parameters to 15, and therefore we are able to compute
them from 14 correspondences.

It is noteworthy that [5] only addresses the case depicted in Fig. 3(f), and that in [14] a
linear formulation with 15 parameters was proposed to address the cases 3(a) to 3(d). On the
other hand our analysis covers all the cases.

3 Towards a minimal solution
Henceforth we will only address the general axial case, but analogous conclusions can be
drawn for the particular cases of Fig. 3.
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n. of variables 1 2 3 4 5 6 7 8 9 10
n. of monomials 4 10 20 35 56 84 120 165 220 286
n. of leading monomials 1 4 10 20 35 56 84 120 165 220

Table 1: Number of monomials in dense cubic polynomials

Using equations 7 to 10 we can write the following expression

αE1+β E2WT+γWE3+δ WE4WT = [αt+β (Rv+ t)+ γ(t−v)+δ (Rt+ t−v)]×R (17)

with α , β , γ , δ being any real values. This means that any matrix Ei that is a linear combina-
tion of E1, E2WT, WE3, WTE4W is itself an essential matrix, verifying the cubic constraints

2EiEi
TEi− tr(EiEi

T)Ei = 0 (18)
detEi = 0 (19)

From this result we are able to generate a high amount of polynomial equations by choos-
ing different values for α , β , γ , δ . Using simulated data we were able to find 78 linearly
independent equations. These equations can then be used in a similar fashion to [8] in order
to reduce the number of required correspondences to solve our problem. If we use 16−N
correspondences, we can compute a N +1 dimensional linear subspace using the equations
6, 11 and 12. Posteriorly we introduce this subspace into instances of equations 18 and 19 to
form a polynomial system in N variables that can must be solved in closed form.

The minimal solution for this problem requires only 6 correspondences, which means
that a polynomial system in 10 variables would need to be solved. However, as the number
of variables grows, the more difficult it is to generate a stable polynomial solver.

Solving polynomial systems can be achieved with the action matrix method described in
[2]. It falls outside the scope of this paper to provide a full account of this method, however,
some of its requirements should be discussed.

In order solve a polynomial system a minimum number of linearly independent poly-
nomial equations is required. This number is usually difficult to determine, however, it is
a general rule of thumb that it increases with the number of different monomials that are
present in the equations. If for a given system we have less equations than the minimum
required, it means that new higher order equations need to be generated by multiplying the
existing ones by other polynomials, resulting in new equations that although being redundant
can be useful to solve the system if they are linearly independent.

Equations 18 and 19 always produce dense cubic polynomials, which means that they
contain all the monomials up to the 3rd degree. In this particular case, the system is guaran-
teed to be solvable if the number of linearly independent equations is greater than or equal
to the number of leading monomials (3rd degree). Note however that this is not a necessary
condition.

In table 1 we list the number of leading monomials for a varying number of variables in
a dense cubic equation. Since we can generate a maximum of 78 linearly independent cubic
equations, it is possible to build an action matrix for a maximum of 6 variables without the
need for generating higher order equations. With a higher number of variables the polyno-
mial system becomes infeasibly complex for our action matrix approach. This means that
we are able to implement a 10-point algorithm using this technique, which requires 56 equa-
tions. In our implementation we generated equations from the constraints of the following
set of essential matrices: {E1,E2WT,WE3,W

TE4W,E1 +E2WT,E1 +WE3}.
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4 The 10-point algorithm
In this section we summarize the steps required to estimate the relative pose between axial
cameras using 10 correspondences:

1. Map correspondences (Li,L′i) into 4D homogeneous coordinates (λi,λ
′
i ) taking into

account the relation of equation 3.

2. Stack 10 instances of equation 6 in terms of the 25 parameters of Φ, and then use
equations 11 and 12 to eliminate 8 parameters in Φ

3. Generate a 7 dimensional linear subspace of solutions using SVD. Since the linear
solution is up to scale, one of the parameters can be set to 1, resulting in 6 unkowns.

4. Introduce the linear expression with 6 unknowns into the polynomial constraints re-
sulting from the following set of essential matrices: {E1,E2WT,WE3,W

TE4W,E1 +
E2WT,E1 +WE3}.

5. Use 56 polynomial equations to compute the action matrix, and obtain 56 solutions
that correspond to its eigenvectors.

6. Substitute all 56 solutions back into the polynomial system and select the solution with
the smallest residue as the correct one. Since the problem is over constrained, only one
solution should have a residue close to zero.

7. Project E1, E2, E3, E4 individually onto the essential matrix manifold using SVD de-
composition.

8. For each of the four 3×3 essential matrices, make an independent factorization to find
R and estimate t with the correct scale by substituting R into equation 6.

9. From the four different estimations of (R, t) choose the one with minimum residue in
equation 6 (alternatively, measure the re-projection errors).

5 Experimental Validation
In this section we validate our algorithm with both synthetic and real data in the case of pose
estimation between stereo cameras. We allow all types of correspondences and therefore use
the 17-parameter formulation of the problem.

We compare our algorithm against the 16-point linear algorithm from Kim et al. [5]. In
its original version this algorithm has a refinement step that alternates between successive
translation and rotation estimations. We do not implement this step in our experiments be-
cause it aims at being fast and simple, sacrificing some robustness and optimality. This step
would not likely be used in a real scenario, where refinement would be accomplished with
bundle adjustment. Additionally, we use both algorithms within a RANSAC framework.

5.1 Synthetic data
We built a simulated environment in which two stereo camera pairs are randomly positioned
with overlapping field of views, and in front of them a set of 3D points is randomly generated
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Figure 4: Error distribution of 10-point algorithm with 250 synthetic trials. The inner box
markers are median values, the box limits are the 25th and 75th percentiles, the dotted line
limits are the minimum and maximum values, and the outer markers are outliers.

within a bounded region. The input to the algorithms are the back-projections of the 3D
points according to the pinhole model affected by image gaussian noise.

Given a motion estimation (R, t) and the groundtruth values (RGT , tGT ), the error in
rotation is measured by the euler angle of the residual rotation RTRGT , the error in translation
direction is measured as the angle defined by t and tGT , and the ratio ||t||/||tgt || evaluates the
quality in the estimation of the translation scale factor.

In a first simulation our algorithm is tested 250 times using 10 input pairwise corre-
spondences for different noise magnitudes, and therefore RANSAC is not used. The error
distributions for translation and rotation displayed in Fig 4 show that in a noise free scenario
our algorithm outputs the exact solution. However, for a noise magnitude over 0.5 pixels
the stability decreases significantly, which suggests that a robust estimation is required to
improve performance. It is also noticeable that with high levels of noise there is a bias that
systematically underestimates the translation scale factor, which calls for further study of the
problem in the future.

In a second simulation our algorithm is compared against the 16-point linear algorithm
for a different number of input correspondences while injecting noise with 1 pixel of stan-
dard deviation. Again, 250 trials were tested for each case and the error distributions for
translation and rotation are displayed in Fig. 5. The better performance of our algorithm is
specially evident when using a low number of correspondences. But it also must be noticed
that for a higher number of correspondences, while the stability between both algorithms
is similar, our algorithm is significantly faster due to the fact that RANSAC is sampling 10
points instead of 16. The RANSAC procedure eliminates the previously observed bias in the
estimation of translation scale factor induced by our 10-point algorithm, furthermore, this ef-
fect is still visible on the 16-point algorithm for estimations with 16 and 18 correspondences,
in which the RANSAC provides few to none advantage.

5.2 Real data

We used data from the The KITTI Vision Benchmark Suite [4], which contains fully cal-
ibrated stereo sequences and GPS measurements acquired by a vehicle on an urban envi-
ronment. We selected a set of images from the sequence ”2011_09_28_drive_0001” and
compare the trajectories estimated by both algorrithms.

Correspondences were obtained by matching SIFT features [6] on the four combinations
of image pairs of consecutive frames (Fig. 6(a)). Both our 10-point algorithm and the 16-
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Figure 5: Performance comparison between 10-point algorithm and 16-point algorithm with
synthetic data. The inner box markers are median values, the box limits are the 25th and
75th percentiles, the dotted line limits are the minimum and maximum values, and the outer
markers are outliers.
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Figure 6: Performance comparison between 10-point algorithm and 16-point algorithm with
real data.

point algorithm are used within a RANSAC framework. Given the high amount of sampling
points for both algorithms the number of RANSAC iterations can become infeasibly high. To
solve this problem a previous filtering of outliers is made using a 5-point RANSAC validation
in all four combinations of matched image pairs. The set of input correspondences after
filtering will contain a very high inlier ratio which significantly decreases the number of
iterations required to find an accurate estimation. We use these algorithms just to make
odometry estimations, i. e., the trajectory is not refined by bundle adjustment. This way the
accumulation of drift error serves as an evaluation of comparative accuracy, showing that our
algorithm provides more robust estimations (Fig. 6(b)).

6 Conclusions
We proposed a new parametrization for modelling the intersection of back-projection rays of
axial cameras. When dealing with the particular case of stereo cameras, this new formula-
tion presents a common framework for dealing with different scenarios that were previously
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treated separately. Furthermore, it allows to derive a number of non-linear constraints that
had not been studied yet, and derive a 10-point algorithm that extends the range of appli-
cations covered by previous methods [5, 12]. Our long-term goal, however, is to reach a
6-point minimal algorithm, which will require a more in-depth study of the non-linear rela-
tions between the essential matrices described in this paper.

7 Acknowledgements
The authors gratefully acknowledge the Portuguese Science Foundation (FCT) that gener-
ously funded this work through project PTDC/EIA-CCO/109120/2008 and grant
SFRH/BD/72323/2010.

References
[1] A. Agrawal, S. Ramalingam, Y. Taguchi, and V. Chari. A theory of multi-layer flat

refractive geometry. In CVPR, 2012.

[2] Martin Byröd, Klas Josephson, and Kalle Åström. Fast and stable polynomial equation
solving and its application to computer vision. Int. J. Comput. Vision, 84(3):237–256,
September 2009. ISSN 0920-5691.

[3] E. Dunn, B. Clipp, and J.-M. Frahm. A geometric solver for calibrated stereo egomo-
tion. In ICCV, 2011.

[4] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driv-
ing? the kitti vision benchmark suite. In CVPR, Providence, USA, June 2012.

[5] Jae-Hak Kim, Hongdong Li, and Richard Hartley. Motion estimation for nonover-
lapping multicamera rigs: Linear algebraic and L∞ geometric solutions. IEEE Trans.
Pattern Anal. Mach. Intell., 32(6):1044–1059, June 2010.

[6] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision, 60:91–110, November 2004. ISSN 0920-5691. doi: 10.1023/B:VISI.
0000029664.99615.94.

[7] Janosch Nikolic. Real-time 6d stereo visual odometry with non-overlapping fields of
view. In CVPR, 2012.

[8] D. Nister. An efficient solution to the five-point relative pose problem. In CVPR, 2003.

[9] R. Pless. Using many cameras as one. In CVPR, 2003.

[10] H Pottmann and J Wallner. Computational line geometry. Springer Verlag, Berlin, 1
edition, 2001.

[11] H. Stewénius, D. Nistér, M. Oskarsson, and K. Åström. Solutions to minimal general-
ized relative pose problems. In OMNIVIS, 2005.

[12] P. Sturm. Multi-view geometry for general camera models. In CVPR, 2005.

Citation
Citation
{Kim, Li, and Hartley} 2010

Citation
Citation
{Sturm} 2005



VASCONCELOS, BARRETO: RELATIVE POSE BETWEEN AXIAL CAMERAS 11

[13] Peter Sturm, Srikumar Ramalingam, Jean-Philippe Tardif, Simone Gasparini, and João
Barreto. Camera models and fundamental concepts used in geometric computer vision.
Foundations and Trends in Computer Graphics and Vision, 6(1-2):1–183, 2011.

[14] Francisco Vasconcelos, João P. Barreto, and Edmond Boyer. A minimal solution for
camera calibration using independent pairwise correspondences. In ECCV, 2012.


